Full Name
Jocić, Danko
Variants
Jocić, D.
Jocic, D.
Jocić, D.R.,
Jocić, Danko R.
 
Main Affiliation
 
 
Scopus Author ID
Loading... 2 0 20 0 false
Loading... 3 0 20 0 false

Publications

Results 1-20 of 35 (Search time: 0.001 seconds).

Issue DateTitleAuthor(s)Rank
11-Jan-2024Norm inequalities for hyperaccretive quasinormal operators, with extensions of the arithmetic-geometric means inequalityJocić, Danko ; Lazarević, Milan M21
22024Norm Estimates for Remainders of Noncommutative Taylor Approximations for Laplace Transformers Defined by Hyperaccretive OperatorsJocić, Danko M21a
32024Norm inequalities for the iterated perturbations of Laplace transformers generated by accretive $$\scriptstyle N$$-tuples of operators in Q and Q* ideals of compact operatorsJocić, Danko ; Golubović, Zora Lj. ; Krstić, Mihailo ; Milašinović, StefanM21
41-Oct-2023Noncommutative Pick–Julia theorems for generalized derivations in Q, Q <sup>∗</sup> and Schatten–von Neumann ideals of compact operatorsJocić, Danko M21
51-Apr-2023Norm inequalities for hypercontractive quasinormal operators and related higher order Sylvester–Stein equations in ideals of compact operatorsJocić, Danko ; Lazarević, Milan M21
61-Nov-2022Noncommutative Schwarz lemma and Pick–Julia Theorems for Generalized Derivations in Norm Ideals of Compact OperatorsJocić, Danko M22
472022Cauchy–Schwarz norm inequalities for elementary operators and inner product type transformers generated by families of subnormal operatorsJocić, Danko ; Lazarević, Milan M21
482022Perturbation norm inequalities for elementary operators generated by analytic functions with positive Taylor coefficientsJocić, Danko ; Lazarević, Milan ; Milović, Matija M22
491-Jan-2021Extensions of the arithmetic–geometric means and Young's norm inequalities to accretive operators, with applicationsJocić, Danko ; Krtinić, Đorđe ; Lazarević, Milan M21
502021Laplace transformers in norm ideals of compact operatorsJocić, Danko ; Krtinić, Đorđe ; Lazarević, Milan M22
511-Sep-2020Cauchy–Schwarz inequalities for inner product type transformers in Q <sup>∗</sup> norm ideals of compact operatorsJocić, Danko ; Krtinić, Đorđe ; Lazarević, Milan M22
5215-Aug-2020Corrigendum to “Inequalities for generalized derivations of operator monotone functions in norm ideals of compact operators” [Linear Algebra Appl. 586 (2020) 43–63] (Linear Algebra and Its Applications (2020) 586 (43–63), (S0024379519304434), (10.1016/j.laa.2019.10.009))Jocić, Danko ; Lazarević, Milan ; Milošević, Stefan M21
531-Feb-2020Inequalities for generalized derivations of operator monotone functions in norm ideals of compact operatorsJocić, Danko ; Lazarević, Milan; Milošević, StefanM21
5415-Oct-2019Equality of norms for a class of Bloch and symmetrically weighted Lipschitz spaces of vector valued functions and derivation inequalities for Pick functionsJocić, Danko M21a
5515-Jul-2019A note on the paper “Norm inequalities in operator ideals” [J. Funct. Anal. 255 (11)(2008), 3208–3228]by G. LarotondaJocić, Danko ; Krtinić, Đorđe ; Lazarević, Milan M21a
561-Apr-2019Clarkson–McCarthy Inequalities for Several Operators and Related Norm Inequalities for p-Modified Unitarily Invariant NormsJocić, Danko 
571-Mar-2018Norm inequalities for a class of elementary operators generated by analytic functions with non-negative Taylor coefficients in ideals of compact operators related to p-modified unitarily invariant normsJocić, Danko ; Lazarević, Milan ; Milošević, Stefan M21
581-Jan-2018Refinements of inequalities related to Landau–Grüss inequalities for elementary operators acting on ideals associated to p-modified unitarily invariant normsJocić, Danko ; Krtinić, Đorđe ; Lazarević, Milan ; Melentijević, Petar ; Milošević, Stefan M22
591-Jan-2017Norm inequalities for elementary operators and other inner product type integral transformers with the spectra contained in the unit discJocić, Danko ; Milošević, Stefan ; Đurić, VladimirM21
601-Jan-2016Refinements of operator Cauchy-Schwarz and Minkowski inequalities for p-modified norms and related norm inequalitiesJocić, Danko ; Milošević, Stefan