Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/550
Title: Laplace transformers in norm ideals of compact operators
Authors: Jocić, Danko 
Krtinić, Đorđe 
Lazarević, Milan 
Affiliations: Real and Functional Analysis 
Real and Functional Analysis 
Mathematical Analysis 
Keywords: Accretive operators;Inner product type transformers;Norm inequalities;Q-norms;Q -norms ∗
Issue Date: 2021
Rank: M22
Journal: Banach Journal of Mathematical Analysis
Abstract: 
Let p⩾ 2 , Φ a symmetrically norming (s.n.) function (resp. Φ(p) its p-modification and Φ(p)∗ a s.n. function adjoint to Φ(p)) and CΦ(H) (resp. CΦ(p)(H) and CΦ(p)∗(H)) be its associated ideals of compact operators acting on a Hilbert space H and let f, g, h: [0 , + ∞) → C be Lebesgue measurable functions. Some recently obtained Cauchy–Schwarz-type norm inequalities were used to systematically explore a class of Laplace transformers of the form Lf(Δ A,B) : X↦ ∫ [,+∞)e-tAXe-tBf(t)dt(=∫[0,+∞)e-tΔA,BXf(t)dt), acting on the B(H) , CΦ(H),CΦ(p)(H) or CΦ(p)∗(H), induced by a generalized derivation Δ A,B: B(H) → B(H) : X↦ AX+ XB and B(B(H)) valued Laplace transform Lf of a function f. If ∫[0,+∞)(||e-tAx||2|f(t)|2+||e-tBx||2|g(t)|2)dt<+∞ for all x∈ H and both A and B are normal, then for all X∈CΦ(H)||∫[0,+∞)e-tAXe-tBf(t)g(t)dt||Φ⩽||(∫[0,+∞)e-t(A∗+A)|f(t)|2dt)12X(∫[0,+∞)e-t(B∗+B)|g(t)|2dt)12||Φ.If α, β∈ [0 , 1] , then for all X∈CΦ(p)∗(H)||L(f∗g)(ΔA,B)X||Φ(p)∗⩽||(L(|f|2-2α∗|g|2-2β)(ΔA∗,A)(I))12X(L(|f|2α∗|g|2β)(ΔB,B∗)(I))12||Φ(p)∗,whenever ∫[0,+∞)(||e-tAx||2|f|2-2α∗|g|2-2β(t)+||e-tB∗x||2|f|2α∗|g|2β(t))dt< + ∞ for all x∈ H and at least one of operators A or B is normal, where Lh(C)=def∫[0,+∞)e-tCh(t)dt denotes the operator valued Laplace transform of a function h and f∗ g denotes a convolution function f∗g(t)=def∫[0,t]f(t-s)g(s)ds for all t⩾ 0. Applications of Laplace transformers to norm inequalities include the norm inequality ||(A∗2+2A∗A+A2)1/2X(B2+2BB∗+B∗2)1/2||Φ(p)∗⩽||A2X+2AXB+XB2||Φ(p)∗,if A, B, X∈ B(H) are such that A, B∗ are 2-hyper-accretive and at least one of them is normal, satisfying A2X+2AXB+XB2∈CΦ(p)∗(H).
URI: https://research.matf.bg.ac.rs/handle/123456789/550
ISSN: 17358787
DOI: 10.1007/s43037-021-00149-3
Appears in Collections:Research outputs

Show full item record

SCOPUSTM   
Citations

5
checked on Jan 14, 2025

Page view(s)

24
checked on Jan 17, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.