Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/550
DC FieldValueLanguage
dc.contributor.authorJocić, Dankoen_US
dc.contributor.authorKrtinić, Đorđeen_US
dc.contributor.authorLazarević, Milanen_US
dc.date.accessioned2022-08-13T10:31:39Z-
dc.date.available2022-08-13T10:31:39Z-
dc.date.issued2021-
dc.identifier.issn17358787en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/550-
dc.description.abstractLet p⩾ 2 , Φ a symmetrically norming (s.n.) function (resp. Φ(p) its p-modification and Φ(p)∗ a s.n. function adjoint to Φ(p)) and CΦ(H) (resp. CΦ(p)(H) and CΦ(p)∗(H)) be its associated ideals of compact operators acting on a Hilbert space H and let f, g, h: [0 , + ∞) → C be Lebesgue measurable functions. Some recently obtained Cauchy–Schwarz-type norm inequalities were used to systematically explore a class of Laplace transformers of the form Lf(Δ A,B) : X↦ ∫ [,+∞)e-tAXe-tBf(t)dt(=∫[0,+∞)e-tΔA,BXf(t)dt), acting on the B(H) , CΦ(H),CΦ(p)(H) or CΦ(p)∗(H), induced by a generalized derivation Δ A,B: B(H) → B(H) : X↦ AX+ XB and B(B(H)) valued Laplace transform Lf of a function f. If ∫[0,+∞)(||e-tAx||2|f(t)|2+||e-tBx||2|g(t)|2)dt<+∞ for all x∈ H and both A and B are normal, then for all X∈CΦ(H)||∫[0,+∞)e-tAXe-tBf(t)g(t)dt||Φ⩽||(∫[0,+∞)e-t(A∗+A)|f(t)|2dt)12X(∫[0,+∞)e-t(B∗+B)|g(t)|2dt)12||Φ.If α, β∈ [0 , 1] , then for all X∈CΦ(p)∗(H)||L(f∗g)(ΔA,B)X||Φ(p)∗⩽||(L(|f|2-2α∗|g|2-2β)(ΔA∗,A)(I))12X(L(|f|2α∗|g|2β)(ΔB,B∗)(I))12||Φ(p)∗,whenever ∫[0,+∞)(||e-tAx||2|f|2-2α∗|g|2-2β(t)+||e-tB∗x||2|f|2α∗|g|2β(t))dt< + ∞ for all x∈ H and at least one of operators A or B is normal, where Lh(C)=def∫[0,+∞)e-tCh(t)dt denotes the operator valued Laplace transform of a function h and f∗ g denotes a convolution function f∗g(t)=def∫[0,t]f(t-s)g(s)ds for all t⩾ 0. Applications of Laplace transformers to norm inequalities include the norm inequality ||(A∗2+2A∗A+A2)1/2X(B2+2BB∗+B∗2)1/2||Φ(p)∗⩽||A2X+2AXB+XB2||Φ(p)∗,if A, B, X∈ B(H) are such that A, B∗ are 2-hyper-accretive and at least one of them is normal, satisfying A2X+2AXB+XB2∈CΦ(p)∗(H).en
dc.relation.ispartofBanach Journal of Mathematical Analysisen
dc.subjectAccretive operatorsen
dc.subjectInner product type transformersen
dc.subjectNorm inequalitiesen
dc.subjectQ-normsen
dc.subjectQ -norms ∗en
dc.titleLaplace transformers in norm ideals of compact operatorsen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s43037-021-00149-3-
dc.identifier.scopus2-s2.0-85115629996-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85115629996-
dc.contributor.affiliationReal and Functional Analysisen_US
dc.contributor.affiliationReal and Functional Analysisen_US
dc.contributor.affiliationMathematical Analysisen_US
dc.description.rankM22en_US
dc.relation.volume15en
dc.relation.issue4en
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptReal and Functional Analysis-
crisitem.author.deptReal and Functional Analysis-
crisitem.author.deptMathematical Analysis-
crisitem.author.orcid0000-0003-2084-7180-
crisitem.author.orcid0000-0001-5652-0038-
crisitem.author.orcid0000-0003-1408-5626-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

5
checked on Nov 8, 2024

Page view(s)

23
checked on Nov 14, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.