Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/1258
Title: Norm inequalities for hypercontractive quasinormal operators and related higher order Sylvester–Stein equations in ideals of compact operators
Authors: Jocić, Danko 
Lazarević, Milan 
Affiliations: Real and Functional Analysis 
Mathematical Analysis 
Keywords: Hypercontractive operators;Model operators (theory);Norm inequalities;Q and Q -norms *
Issue Date: 1-Apr-2023
Publisher: Springer
Journal: Banach Journal of Mathematical Analysis
Abstract: 
Amongst others, for N∈ N, some Q∗ symmetrically norming (s.n.) functions Ψ and N-hypercontractive operators C and D∗, such that at least one of C, D∗ is quasinormal and [InlineEquation not available: see fulltext.] for some bounded Hilbert space operator X, we have proved ||(∑n=0N(-1)n(Nn)C∗nCn)12(X-∑K=0N-1(nK)Cn--K(∑i=0K(-1)i(Ki)CiXDi)Dn--K)×(∑n=0N(-1)n(Nn)DnD∗n)12||Ψ⩽||(I-AC)12(∑n=0N(-1)n(Nn)CnXDn)(I-AD∗)12||Ψ⩽||∑n=0N(-1)n(Nn)CnXDn||Ψ,where AC=defslimn→∞C∗nCn and AD∗=defslimn→∞DnD∗n. Under the additional convergence conditions, this implies ||(∑n=0N(-1)n(Nn)C∗nCn)12X(∑n=0N(-1)n(Nn)DnD∗n)12||Ψ⩽||∑n=0N(-1)n(Nn)CnXDn||Ψ.Above, [InlineEquation not available: see fulltext.] denotes the ideal of compact operators associated with the s.n. function Ψ.
Description: 
This version of the article has been accepted for publication, after peer review (when applicable) but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at https://dx.doi.org/10.1007/s43037-023-00247-4
URI: https://research.matf.bg.ac.rs/handle/123456789/1258
ISSN: 26622033
DOI: 10.1007/s43037-023-00247-4
Appears in Collections:Research outputs

Files in This Item:
File Description SizeFormat Existing users please
Jocic BJMA 2023 17,37.pdf728.07 kBAdobe PDF
    Request a copy
Show full item record

SCOPUSTM   
Citations

1
checked on Nov 8, 2024

Page view(s)

38
checked on Nov 14, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.