Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/537
Title: Perturbation norm inequalities for elementary operators generated by analytic functions with positive Taylor coefficients
Authors: Jocić, Danko 
Lazarević, Milan 
Milović, Matija
Affiliations: Real and Functional Analysis 
Mathematical Analysis 
Keywords: Elementary operators;Norm inequalities;Q and Q norms ∗;Semi-definite operators
Issue Date: 2022
Publisher: Springer
Journal: Positivity
Abstract: 
Let f(z)=def∑m=0∞cmzm be an analytic function with positive Taylor coefficients cm⩾ 0 , with Rf> 0 as its radius of convergence, let T, S: R→ C be trigonometrical polynomials and fTS,t, fT¯T,t, fS¯S,t their associated analytic functions. Let also {An}n=1∞,{Bn}n=1∞,{Cn}n=1∞ and {Dn}n=1∞ be strongly square summable families in [InlineEquation not available: see fulltext.] each of them consisting of mutually commuting normal operators, satisfying also that AmCn= CnAm and BmDn= DnBm for all m, n∈ N. Then for any symmetrically norming function Φ , for any [InlineEquation not available: see fulltext.] and t∈ R, such that [InlineEquation not available: see fulltext.]|||∑n=1∞(An∗An-Cn∗Cn)|12(fTS,t(∑n=1∞An⊗Bn)X-fTS,t(∑n=1∞Cn⊗Dn)X)×|∑n=1∞(BnBn∗-DnDn∗)|12||Φ⩽|||fT¯T,t(∑n=1∞An∗An)-fT¯T,t(∑n=1∞Cn∗Cn)|12∑n=1∞(AnXBn-CnXDn)×|fS¯S,t(∑n=1∞BnBn∗)-fS¯S,t(∑n=1∞DnDn∗)|12||Φ,if max{||∑n=1∞An∗An||,||∑n=1∞BnBn∗||,||∑n=1∞Cn∗Cn||,||∑n=1∞DnDn∗||}
URI: https://research.matf.bg.ac.rs/handle/123456789/537
ISSN: 13851292
DOI: 10.1007/s11117-022-00923-z
Appears in Collections:Research outputs

Show full item record

SCOPUSTM   
Citations

1
checked on Nov 8, 2024

Page view(s)

25
checked on Nov 14, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.