Please use this identifier to cite or link to this item:
https://research.matf.bg.ac.rs/handle/123456789/537
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Jocić, Danko | en_US |
dc.contributor.author | Lazarević, Milan | en_US |
dc.contributor.author | Milović, Matija | en_US |
dc.date.accessioned | 2022-08-13T10:31:37Z | - |
dc.date.available | 2022-08-13T10:31:37Z | - |
dc.date.issued | 2022 | - |
dc.identifier.issn | 13851292 | en |
dc.identifier.uri | https://research.matf.bg.ac.rs/handle/123456789/537 | - |
dc.description.abstract | Let f(z)=def∑m=0∞cmzm be an analytic function with positive Taylor coefficients cm⩾ 0 , with Rf> 0 as its radius of convergence, let T, S: R→ C be trigonometrical polynomials and fTS,t, fT¯T,t, fS¯S,t their associated analytic functions. Let also {An}n=1∞,{Bn}n=1∞,{Cn}n=1∞ and {Dn}n=1∞ be strongly square summable families in [InlineEquation not available: see fulltext.] each of them consisting of mutually commuting normal operators, satisfying also that AmCn= CnAm and BmDn= DnBm for all m, n∈ N. Then for any symmetrically norming function Φ , for any [InlineEquation not available: see fulltext.] and t∈ R, such that [InlineEquation not available: see fulltext.]|||∑n=1∞(An∗An-Cn∗Cn)|12(fTS,t(∑n=1∞An⊗Bn)X-fTS,t(∑n=1∞Cn⊗Dn)X)×|∑n=1∞(BnBn∗-DnDn∗)|12||Φ⩽|||fT¯T,t(∑n=1∞An∗An)-fT¯T,t(∑n=1∞Cn∗Cn)|12∑n=1∞(AnXBn-CnXDn)×|fS¯S,t(∑n=1∞BnBn∗)-fS¯S,t(∑n=1∞DnDn∗)|12||Φ,if max{||∑n=1∞An∗An||,||∑n=1∞BnBn∗||,||∑n=1∞Cn∗Cn||,||∑n=1∞DnDn∗||}<Rf. We also provide versions of the inequality (1) for Q, Q∗ and the Schatten-von Neumann ideals of compact operators, with reduced requirements for the normality and commutativity for the observed families, if ∑n=1∞(AnAn∗-CnCn∗) or ∑n=1∞(Bn∗Bn-Dn∗Dn) is a semi-definite operator. | en |
dc.publisher | Springer | en_US |
dc.relation.ispartof | Positivity | en_US |
dc.subject | Elementary operators | en |
dc.subject | Norm inequalities | en |
dc.subject | Q and Q norms ∗ | en |
dc.subject | Semi-definite operators | en |
dc.title | Perturbation norm inequalities for elementary operators generated by analytic functions with positive Taylor coefficients | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1007/s11117-022-00923-z | - |
dc.identifier.scopus | 2-s2.0-85133430505 | - |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/85133430505 | - |
dc.contributor.affiliation | Real and Functional Analysis | en_US |
dc.contributor.affiliation | Mathematical Analysis | en_US |
dc.relation.issn | 1385-1292 | en_US |
dc.relation.volume | 26 | en_US |
dc.relation.issue | 4 | en_US |
item.fulltext | No Fulltext | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | Real and Functional Analysis | - |
crisitem.author.dept | Mathematical Analysis | - |
crisitem.author.orcid | 0000-0003-2084-7180 | - |
crisitem.author.orcid | 0000-0003-1408-5626 | - |
Appears in Collections: | Research outputs |
SCOPUSTM
Citations
1
checked on Nov 8, 2024
Page view(s)
25
checked on Nov 14, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.