Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/537
DC FieldValueLanguage
dc.contributor.authorJocić, Dankoen_US
dc.contributor.authorLazarević, Milanen_US
dc.contributor.authorMilović, Matijaen_US
dc.date.accessioned2022-08-13T10:31:37Z-
dc.date.available2022-08-13T10:31:37Z-
dc.date.issued2022-
dc.identifier.issn13851292en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/537-
dc.description.abstractLet f(z)=def∑m=0∞cmzm be an analytic function with positive Taylor coefficients cm⩾ 0 , with Rf> 0 as its radius of convergence, let T, S: R→ C be trigonometrical polynomials and fTS,t, fT¯T,t, fS¯S,t their associated analytic functions. Let also {An}n=1∞,{Bn}n=1∞,{Cn}n=1∞ and {Dn}n=1∞ be strongly square summable families in [InlineEquation not available: see fulltext.] each of them consisting of mutually commuting normal operators, satisfying also that AmCn= CnAm and BmDn= DnBm for all m, n∈ N. Then for any symmetrically norming function Φ , for any [InlineEquation not available: see fulltext.] and t∈ R, such that [InlineEquation not available: see fulltext.]|||∑n=1∞(An∗An-Cn∗Cn)|12(fTS,t(∑n=1∞An⊗Bn)X-fTS,t(∑n=1∞Cn⊗Dn)X)×|∑n=1∞(BnBn∗-DnDn∗)|12||Φ⩽|||fT¯T,t(∑n=1∞An∗An)-fT¯T,t(∑n=1∞Cn∗Cn)|12∑n=1∞(AnXBn-CnXDn)×|fS¯S,t(∑n=1∞BnBn∗)-fS¯S,t(∑n=1∞DnDn∗)|12||Φ,if max{||∑n=1∞An∗An||,||∑n=1∞BnBn∗||,||∑n=1∞Cn∗Cn||,||∑n=1∞DnDn∗||}<Rf. We also provide versions of the inequality (1) for Q, Q∗ and the Schatten-von Neumann ideals of compact operators, with reduced requirements for the normality and commutativity for the observed families, if ∑n=1∞(AnAn∗-CnCn∗) or ∑n=1∞(Bn∗Bn-Dn∗Dn) is a semi-definite operator.en
dc.publisherSpringeren_US
dc.relation.ispartofPositivityen_US
dc.subjectElementary operatorsen
dc.subjectNorm inequalitiesen
dc.subjectQ and Q norms ∗en
dc.subjectSemi-definite operatorsen
dc.titlePerturbation norm inequalities for elementary operators generated by analytic functions with positive Taylor coefficientsen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s11117-022-00923-z-
dc.identifier.scopus2-s2.0-85133430505-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85133430505-
dc.contributor.affiliationReal and Functional Analysisen_US
dc.contributor.affiliationMathematical Analysisen_US
dc.relation.issn1385-1292en_US
dc.relation.volume26en_US
dc.relation.issue4en_US
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptReal and Functional Analysis-
crisitem.author.deptMathematical Analysis-
crisitem.author.orcid0000-0003-2084-7180-
crisitem.author.orcid0000-0003-1408-5626-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

1
checked on Nov 8, 2024

Page view(s)

25
checked on Nov 14, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.