Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/999
Title: Boundary modulus of continuity and quasiconformal mappings
Authors: Arsenović, Miloš 
Manojlović, Vesna
Näkki, Raimo
Affiliations: Mathematical Analysis 
Keywords: Modulus of continuity;Quasiconformal mapping
Issue Date: 1-Feb-2012
Journal: Annales Academiae Scientiarum Fennicae Mathematica
Abstract: 
Let D be a bounded domain in R n, n ≥ 2, and let f be a continuous mapping of D into R n which is quasiconformal in D. Suppose that |f(x) - f(y)| ≤ ω(|x - y|) for all x and y in ∂D, where ω is a non-negative non-decreasing function satisfying ω(2t) ≤ 2ω(t) for t ≥ 0. We prove, with an additional growth condition on ω, that |f(x) - f(y)| ≤ C maxf{ω(|x - y|); |x - y| α} for all x; y ∈ D, where α = K I(f) 1/(1-n).
URI: https://research.matf.bg.ac.rs/handle/123456789/999
ISSN: 1239629X
DOI: 10.5186/aasfm.2012.3718
Appears in Collections:Research outputs

Show full item record

SCOPUSTM   
Citations

6
checked on Jan 14, 2025

Page view(s)

12
checked on Jan 17, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.