Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/999
Title: Boundary modulus of continuity and quasiconformal mappings
Authors: Arsenović, Miloš 
Manojlović, Vesna
Näkki, Raimo
Affiliations: Mathematical Analysis 
Keywords: Modulus of continuity;Quasiconformal mapping
Issue Date: 1-Feb-2012
Journal: Annales Academiae Scientiarum Fennicae Mathematica
Abstract: 
Let D be a bounded domain in R n, n ≥ 2, and let f be a continuous mapping of D into R n which is quasiconformal in D. Suppose that |f(x) - f(y)| ≤ ω(|x - y|) for all x and y in ∂D, where ω is a non-negative non-decreasing function satisfying ω(2t) ≤ 2ω(t) for t ≥ 0. We prove, with an additional growth condition on ω, that |f(x) - f(y)| ≤ C maxf{ω(|x - y|); |x - y| α} for all x; y ∈ D, where α = K I(f) 1/(1-n).
URI: https://research.matf.bg.ac.rs/handle/123456789/999
ISSN: 1239629X
DOI: 10.5186/aasfm.2012.3718
Appears in Collections:Research outputs

Show full item record

SCOPUSTM   
Citations

6
checked on Apr 11, 2025

Page view(s)

12
checked on Jan 19, 2025

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.