Please use this identifier to cite or link to this item:
https://research.matf.bg.ac.rs/handle/123456789/999
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Arsenović, Miloš | en_US |
dc.contributor.author | Manojlović, Vesna | en_US |
dc.contributor.author | Näkki, Raimo | en_US |
dc.date.accessioned | 2022-08-17T11:10:53Z | - |
dc.date.available | 2022-08-17T11:10:53Z | - |
dc.date.issued | 2012-02-01 | - |
dc.identifier.issn | 1239629X | en |
dc.identifier.uri | https://research.matf.bg.ac.rs/handle/123456789/999 | - |
dc.description.abstract | Let D be a bounded domain in R n, n ≥ 2, and let f be a continuous mapping of D into R n which is quasiconformal in D. Suppose that |f(x) - f(y)| ≤ ω(|x - y|) for all x and y in ∂D, where ω is a non-negative non-decreasing function satisfying ω(2t) ≤ 2ω(t) for t ≥ 0. We prove, with an additional growth condition on ω, that |f(x) - f(y)| ≤ C maxf{ω(|x - y|); |x - y| α} for all x; y ∈ D, where α = K I(f) 1/(1-n). | en |
dc.relation.ispartof | Annales Academiae Scientiarum Fennicae Mathematica | en_US |
dc.subject | Modulus of continuity | en |
dc.subject | Quasiconformal mapping | en |
dc.title | Boundary modulus of continuity and quasiconformal mappings | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.5186/aasfm.2012.3718 | - |
dc.identifier.scopus | 2-s2.0-84858711416 | - |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/84858711416 | - |
dc.contributor.affiliation | Mathematical Analysis | en_US |
dc.relation.firstpage | 107 | en_US |
dc.relation.lastpage | 118 | en_US |
dc.relation.volume | 37 | en_US |
item.grantfulltext | none | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.openairetype | Article | - |
item.fulltext | No Fulltext | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | Mathematical Analysis | - |
crisitem.author.orcid | 0000-0002-5450-2407 | - |
Appears in Collections: | Research outputs |
SCOPUSTM
Citations
6
checked on Mar 26, 2025
Page view(s)
12
checked on Jan 19, 2025
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.