Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/999
DC FieldValueLanguage
dc.contributor.authorArsenović, Milošen_US
dc.contributor.authorManojlović, Vesnaen_US
dc.contributor.authorNäkki, Raimoen_US
dc.date.accessioned2022-08-17T11:10:53Z-
dc.date.available2022-08-17T11:10:53Z-
dc.date.issued2012-02-01-
dc.identifier.issn1239629Xen
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/999-
dc.description.abstractLet D be a bounded domain in R n, n ≥ 2, and let f be a continuous mapping of D into R n which is quasiconformal in D. Suppose that |f(x) - f(y)| ≤ ω(|x - y|) for all x and y in ∂D, where ω is a non-negative non-decreasing function satisfying ω(2t) ≤ 2ω(t) for t ≥ 0. We prove, with an additional growth condition on ω, that |f(x) - f(y)| ≤ C maxf{ω(|x - y|); |x - y| α} for all x; y ∈ D, where α = K I(f) 1/(1-n).en_US
dc.language.isoenen_US
dc.publisherHelsinki : Academia Scientiarum Fennicaen_US
dc.relation.ispartofAnnales Academiae Scientiarum Fennicae Mathematicaen_US
dc.subjectModulus of continuityen_US
dc.subjectQuasiconformal mappingen_US
dc.titleBoundary modulus of continuity and quasiconformal mappingsen_US
dc.typeArticleen_US
dc.identifier.doi10.5186/aasfm.2012.3718-
dc.identifier.scopus2-s2.0-84858711416-
dc.identifier.isi000301012300008-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/84858711416-
dc.contributor.affiliationMathematical Analysisen_US
dc.relation.issn1239-629Xen_US
dc.description.rankM21en_US
dc.relation.firstpage107en_US
dc.relation.lastpage118en_US
dc.relation.volume37en_US
item.openairetypeArticle-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
crisitem.author.deptMathematical Analysis-
crisitem.author.orcid0000-0002-5450-2407-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

6
checked on Oct 31, 2025

Page view(s)

12
checked on Jan 19, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.