Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/991
Title: Moduli of continuity of harmonic quasiregular mappings on bounded domains
Authors: Abaob, Ali
Arsenović, Miloš 
Mateljević, Miodrag
Shkheam, Abejela
Affiliations: Mathematical Analysis 
Keywords: Harmonic mappings;Lipschitz-type spaces;Quasiregular mappings;Uniform domains
Issue Date: 1-Jan-2013
Journal: Annales Academiae Scientiarum Fennicae Mathematica
Abstract: 
We prove that Ωu(δ) ≤ CΩf (δ), where u: Ω → Rn is the harmonic extension of a continuous map f: ω → Rn, if u is a K-quasiregular map and ω is bounded in Rn with C2 boundary. Here C is a constant depending only on n, Ωf and K and Ωh denotes the modulus of continuity of h. We also prove a version of this result for ΛΩ-extension domains with c-uniformly perfect boundary and quasiconformal mappings.
URI: https://research.matf.bg.ac.rs/handle/123456789/991
ISSN: 1239629X
DOI: 10.5186/aasfm.2013.3848
Appears in Collections:Research outputs

Show full item record

SCOPUSTM   
Citations

4
checked on Nov 8, 2024

Page view(s)

10
checked on Nov 14, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.