Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/991
DC FieldValueLanguage
dc.contributor.authorAbaob, Alien_US
dc.contributor.authorArsenović, Milošen_US
dc.contributor.authorMateljević, Miodragen_US
dc.contributor.authorShkheam, Abejelaen_US
dc.date.accessioned2022-08-17T11:10:52Z-
dc.date.available2022-08-17T11:10:52Z-
dc.date.issued2013-01-01-
dc.identifier.issn1239629Xen
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/991-
dc.description.abstractWe prove that Ωu(δ) ≤ CΩf (δ), where u: Ω → Rn is the harmonic extension of a continuous map f: ω → Rn, if u is a K-quasiregular map and ω is bounded in Rn with C2 boundary. Here C is a constant depending only on n, Ωf and K and Ωh denotes the modulus of continuity of h. We also prove a version of this result for ΛΩ-extension domains with c-uniformly perfect boundary and quasiconformal mappings.en
dc.relation.ispartofAnnales Academiae Scientiarum Fennicae Mathematicaen_US
dc.subjectHarmonic mappingsen
dc.subjectLipschitz-type spacesen
dc.subjectQuasiregular mappingsen
dc.subjectUniform domainsen
dc.titleModuli of continuity of harmonic quasiregular mappings on bounded domainsen_US
dc.typeArticleen_US
dc.identifier.doi10.5186/aasfm.2013.3848-
dc.identifier.scopus2-s2.0-84908210871-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/84908210871-
dc.contributor.affiliationMathematical Analysisen_US
dc.relation.firstpage839en_US
dc.relation.lastpage847en_US
dc.relation.volume38en_US
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptMathematical Analysis-
crisitem.author.orcid0000-0002-5450-2407-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

4
checked on Nov 8, 2024

Page view(s)

10
checked on Nov 14, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.