Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/988
Title: Harmonic Bergman spaces on the complement of a lattice
Authors: Shkheam, Abejela
Abaob, Ali
Arsenović, Miloš 
Affiliations: Mathematical Analysis 
Keywords: Bergman spaces;Harmonic functions;Integer lattice
Issue Date: 18-Jul-2013
Journal: Filomat
Abstract: 
We investigate harmonic Bergman spaces bp = bp(Ω), 0 < p < ∞, where Ω = ℝn \ ℤn and prove that bq ⊂ bp for n/(k + 1) ≤ q < p < n/k. In the planar case we prove that bp is non empty for all 0 < p < ∞. Further, for each 0 < p < ∞ there is a non-trivial f ∈ bp tending to zero at infinity at any prescribed rate.
URI: https://research.matf.bg.ac.rs/handle/123456789/988
ISSN: 03545180
DOI: 10.2298/FIL1302245S
Appears in Collections:Research outputs

Show full item record

Page view(s)

21
checked on Jan 17, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.