Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/988
DC FieldValueLanguage
dc.contributor.authorShkheam, Abejelaen_US
dc.contributor.authorAbaob, Alien_US
dc.contributor.authorArsenović, Milošen_US
dc.date.accessioned2022-08-17T11:10:52Z-
dc.date.available2022-08-17T11:10:52Z-
dc.date.issued2013-07-18-
dc.identifier.issn03545180en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/988-
dc.description.abstractWe investigate harmonic Bergman spaces bp = bp(Ω), 0 < p < ∞, where Ω = ℝn \ ℤn and prove that bq ⊂ bp for n/(k + 1) ≤ q < p < n/k. In the planar case we prove that bp is non empty for all 0 < p < ∞. Further, for each 0 < p < ∞ there is a non-trivial f ∈ bp tending to zero at infinity at any prescribed rate.en
dc.relation.ispartofFilomaten
dc.subjectBergman spacesen
dc.subjectHarmonic functionsen
dc.subjectInteger latticeen
dc.titleHarmonic Bergman spaces on the complement of a latticeen_US
dc.typeArticleen_US
dc.identifier.doi10.2298/FIL1302245S-
dc.identifier.scopus2-s2.0-84880108869-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/84880108869-
dc.contributor.affiliationMathematical Analysisen_US
dc.relation.firstpage245en
dc.relation.lastpage249en
dc.relation.volume27en
dc.relation.issue2en
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptMathematical Analysis-
crisitem.author.orcid0000-0002-5450-2407-
Appears in Collections:Research outputs
Show simple item record

Page view(s)

19
checked on Nov 14, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.