Please use this identifier to cite or link to this item:
https://research.matf.bg.ac.rs/handle/123456789/988
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Shkheam, Abejela | en_US |
dc.contributor.author | Abaob, Ali | en_US |
dc.contributor.author | Arsenović, Miloš | en_US |
dc.date.accessioned | 2022-08-17T11:10:52Z | - |
dc.date.available | 2022-08-17T11:10:52Z | - |
dc.date.issued | 2013-07-18 | - |
dc.identifier.issn | 03545180 | en |
dc.identifier.uri | https://research.matf.bg.ac.rs/handle/123456789/988 | - |
dc.description.abstract | We investigate harmonic Bergman spaces bp = bp(Ω), 0 < p < ∞, where Ω = ℝn \ ℤn and prove that bq ⊂ bp for n/(k + 1) ≤ q < p < n/k. In the planar case we prove that bp is non empty for all 0 < p < ∞. Further, for each 0 < p < ∞ there is a non-trivial f ∈ bp tending to zero at infinity at any prescribed rate. | en |
dc.relation.ispartof | Filomat | en |
dc.subject | Bergman spaces | en |
dc.subject | Harmonic functions | en |
dc.subject | Integer lattice | en |
dc.title | Harmonic Bergman spaces on the complement of a lattice | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.2298/FIL1302245S | - |
dc.identifier.scopus | 2-s2.0-84880108869 | - |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/84880108869 | - |
dc.contributor.affiliation | Mathematical Analysis | en_US |
dc.relation.firstpage | 245 | en |
dc.relation.lastpage | 249 | en |
dc.relation.volume | 27 | en |
dc.relation.issue | 2 | en |
item.fulltext | No Fulltext | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | Mathematical Analysis | - |
crisitem.author.orcid | 0000-0002-5450-2407 | - |
Appears in Collections: | Research outputs |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.