Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/715
Title: Bounding the largest eigenvalue of signed graphs
Authors: Stanić, Zoran 
Affiliations: Numerical Mathematics and Optimization 
Keywords: Adjacency matrix;Index;Net-regular signed graph;Signed graph;Switching equivalence;Upper bound
Issue Date: 15-Jul-2019
Rank: M21
Publisher: Elsevier
Journal: Linear Algebra and Its Applications
Abstract: 
In this study we derive certain upper bounds for the largest eigenvalue (called the index and denoted λ 1 ) of a signed graph. In particular, we prove the following upper bound: λ 12 ≤max⁡{d i m i −n i :1≤i≤n}, where d i is the vertex degree of i, m i =[Formula presented]∑ j∼i d j and n i =∑j∼i(|N iσ(ij) ∩N j |−||N iσ(ij) ∩N jσ(ij) |−|N iσ(ij) ∩N j−σ(ij) ||), with N i ,N i+ and N i− denoting the n...
URI: https://research.matf.bg.ac.rs/handle/123456789/715
ISSN: 00243795
DOI: 10.1016/j.laa.2019.03.011
Appears in Collections:Research outputs

Show full item record

SCOPUSTM   
Citations

23
checked on Mar 27, 2025

Page view(s)

14
checked on Jan 19, 2025

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.