Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/715
DC FieldValueLanguage
dc.contributor.authorStanić, Zoranen_US
dc.date.accessioned2022-08-15T15:00:10Z-
dc.date.available2022-08-15T15:00:10Z-
dc.date.issued2019-07-15-
dc.identifier.issn00243795en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/715-
dc.description.abstractIn this study we derive certain upper bounds for the largest eigenvalue (called the index and denoted λ 1 ) of a signed graph. In particular, we prove the following upper bound: λ 12 ≤max⁡{d i m i −n i :1≤i≤n}, where d i is the vertex degree of i, m i =[Formula presented]∑ j∼i d j and n i =∑j∼i(|N iσ(ij) ∩N j |−||N iσ(ij) ∩N jσ(ij) |−|N iσ(ij) ∩N j−σ(ij) ||), with N i ,N i+ and N i− denoting the neighbourhood, the positive neighbourhood and the negative neighbourhood of a vertex i. In our proofs we use standard techniques transferred from the field of (unsigned, simple) graphs. Using the fact that all switching equivalent signed graphs share the same spectrum, we derive some more sophisticated bounds.en
dc.relation.ispartofLinear Algebra and Its Applicationsen
dc.subjectAdjacency matrixen
dc.subjectIndexen
dc.subjectNet-regular signed graphen
dc.subjectSigned graphen
dc.subjectSwitching equivalenceen
dc.subjectUpper bounden
dc.titleBounding the largest eigenvalue of signed graphsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.laa.2019.03.011-
dc.identifier.scopus2-s2.0-85063405891-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85063405891-
dc.contributor.affiliationNumerical Mathematics and Optimizationen_US
dc.relation.firstpage80en
dc.relation.lastpage89en
dc.relation.volume573en
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptNumerical Mathematics and Optimization-
crisitem.author.orcid0000-0002-4949-4203-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

22
checked on Nov 15, 2024

Page view(s)

13
checked on Nov 15, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.