Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/715
DC FieldValueLanguage
dc.contributor.authorStanić, Zoranen_US
dc.date.accessioned2022-08-15T15:00:10Z-
dc.date.available2022-08-15T15:00:10Z-
dc.date.issued2019-07-15-
dc.identifier.issn00243795en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/715-
dc.description.abstractIn this study we derive certain upper bounds for the largest eigenvalue (called the index and denoted λ 1 ) of a signed graph. In particular, we prove the following upper bound: λ 12 ≤max⁡{d i m i −n i :1≤i≤n}, where d i is the vertex degree of i, m i =[Formula presented]∑ j∼i d j and n i =∑j∼i(|N iσ(ij) ∩N j |−||N iσ(ij) ∩N jσ(ij) |−|N iσ(ij) ∩N j−σ(ij) ||), with N i ,N i+ and N i− denoting the neighbourhood, the positive neighbourhood and the negative neighbourhood of a vertex i. In our proofs we use standard techniques transferred from the field of (unsigned, simple) graphs. Using the fact that all switching equivalent signed graphs share the same spectrum, we derive some more sophisticated bounds.en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofLinear Algebra and Its Applicationsen_US
dc.subjectAdjacency matrixen_US
dc.subjectIndexen_US
dc.subjectNet-regular signed graphen_US
dc.subjectSigned graphen_US
dc.subjectSwitching equivalenceen_US
dc.subjectUpper bounden_US
dc.titleBounding the largest eigenvalue of signed graphsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.laa.2019.03.011-
dc.identifier.scopus2-s2.0-85063405891-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85063405891-
dc.contributor.affiliationNumerical Mathematics and Optimizationen_US
dc.relation.issn0024-3795en_US
dc.description.rankM21en_US
dc.relation.firstpage80en_US
dc.relation.lastpage89en_US
dc.relation.volume573en_US
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.languageiso639-1en-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
crisitem.author.deptNumerical Mathematics and Optimization-
crisitem.author.orcid0000-0002-4949-4203-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

23
checked on Mar 27, 2025

Page view(s)

14
checked on Jan 19, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.