Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/564
Title: A matricial analogue of Fejer's theory for different types of convergence
Authors: Krtinić, Đorđe 
Affiliations: Real and Functional Analysis 
Keywords: Abel convergence;Bounded operators;Schur multipliers;Toeplitz matrices;u.i. Norms
Issue Date: 1-Jan-2007
Journal: Mathematische Nachrichten
Abstract: 
We describe the space of operators on a Hilbert space with the summable Fourier expansion and prove that this space does not depend on the kind of summability method. We consider the same problem in the spaces of operators with respect to unitarily invariant norms. © 2007 WILEY-VCH Verlag GmbH & Co. KGaA.
URI: https://research.matf.bg.ac.rs/handle/123456789/564
ISSN: 0025584X
DOI: 10.1002/mana.200410563
Appears in Collections:Research outputs

Show full item record

SCOPUSTM   
Citations

5
checked on Jan 13, 2025

Page view(s)

14
checked on Jan 17, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.