Please use this identifier to cite or link to this item:
https://research.matf.bg.ac.rs/handle/123456789/564
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Krtinić, Đorđe | en_US |
dc.date.accessioned | 2022-08-13T10:46:26Z | - |
dc.date.available | 2022-08-13T10:46:26Z | - |
dc.date.issued | 2007-01-01 | - |
dc.identifier.issn | 0025584X | en |
dc.identifier.uri | https://research.matf.bg.ac.rs/handle/123456789/564 | - |
dc.description.abstract | We describe the space of operators on a Hilbert space with the summable Fourier expansion and prove that this space does not depend on the kind of summability method. We consider the same problem in the spaces of operators with respect to unitarily invariant norms. © 2007 WILEY-VCH Verlag GmbH & Co. KGaA. | en |
dc.relation.ispartof | Mathematische Nachrichten | en |
dc.subject | Abel convergence | en |
dc.subject | Bounded operators | en |
dc.subject | Schur multipliers | en |
dc.subject | Toeplitz matrices | en |
dc.subject | u.i. Norms | en |
dc.title | A matricial analogue of Fejer's theory for different types of convergence | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1002/mana.200410563 | - |
dc.identifier.scopus | 2-s2.0-35248881086 | - |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/35248881086 | - |
dc.contributor.affiliation | Real and Functional Analysis | en_US |
dc.relation.firstpage | 1537 | en |
dc.relation.lastpage | 1542 | en |
dc.relation.volume | 280 | en |
dc.relation.issue | 13-14 | en |
item.fulltext | No Fulltext | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | Real and Functional Analysis | - |
crisitem.author.orcid | 0000-0001-5652-0038 | - |
Appears in Collections: | Research outputs |
SCOPUSTM
Citations
5
checked on Nov 11, 2024
Page view(s)
13
checked on Nov 14, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.