Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/549
Title: Landau and Grüss type inequalities for inner product type integral transformers in norm ideals
Authors: Jocić, Danko 
Krtinić, Đorđe 
Moslehian, Mohammad Sal
Affiliations: Real and Functional Analysis 
Real and Functional Analysis 
Keywords: Elementary operators;Gel'fand integral;Grüss type inequality;Hilbert modules;Landau type inequality;Norm inequality
Issue Date: 1-Jan-2013
Journal: Mathematical Inequalities and Applications
Abstract: 
For a probability measure μ and for square integrable fields (A t) and (Bt) (t ∈ Ω) of commuting normal operators we prove Landau type inequality |||∫Ω A tXBtdμ(t) - ∫ΩA tdμ(t)X ∫Ω Btdμ(t)||| ≤ |||√∫Ω |At|2 dμ(t)- | ∫Ω At dμ(t) |2 X√ ∫Ω |Bt dμ(t) |2 ||| for all X ∈ B(H) and for all unitarily invariant norms ||| · |||. For Schatten p-norms similar inequalities are given for arbitrary double square integrable fields. Also, for all bounded self-adjoint fields satisfying C ≤ A t ≤ D and E ≤ Bt ≤ F for all t ∈ Ω and some bounded self-adjoint operators C,D,E and F , and for all X ∈ C |||·||| (H ) we prove Grüss type inequality |||∫Ω AtXBt dμ(t) - ∫Ω At dμ(t)X ∫Ω B t dμ(t) ||| ≤ ||D - C|| · ||F - E||/4 · |||X|||. More general results for arbitrary bounded fields are also given. © ELEMEN.
URI: https://research.matf.bg.ac.rs/handle/123456789/549
ISSN: 13314343
DOI: 10.7153/mia-16-08
Appears in Collections:Research outputs

Show full item record

SCOPUSTM   
Citations

21
checked on Nov 9, 2024

Page view(s)

10
checked on Nov 14, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.