Please use this identifier to cite or link to this item:
https://research.matf.bg.ac.rs/handle/123456789/549
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Jocić, Danko | en_US |
dc.contributor.author | Krtinić, Đorđe | en_US |
dc.contributor.author | Moslehian, Mohammad Sal | en_US |
dc.date.accessioned | 2022-08-13T10:31:38Z | - |
dc.date.available | 2022-08-13T10:31:38Z | - |
dc.date.issued | 2013-01-01 | - |
dc.identifier.issn | 13314343 | en |
dc.identifier.uri | https://research.matf.bg.ac.rs/handle/123456789/549 | - |
dc.description.abstract | For a probability measure μ and for square integrable fields (A t) and (Bt) (t ∈ Ω) of commuting normal operators we prove Landau type inequality |||∫Ω A tXBtdμ(t) - ∫ΩA tdμ(t)X ∫Ω Btdμ(t)||| ≤ |||√∫Ω |At|2 dμ(t)- | ∫Ω At dμ(t) |2 X√ ∫Ω |Bt dμ(t) |2 ||| for all X ∈ B(H) and for all unitarily invariant norms ||| · |||. For Schatten p-norms similar inequalities are given for arbitrary double square integrable fields. Also, for all bounded self-adjoint fields satisfying C ≤ A t ≤ D and E ≤ Bt ≤ F for all t ∈ Ω and some bounded self-adjoint operators C,D,E and F , and for all X ∈ C |||·||| (H ) we prove Grüss type inequality |||∫Ω AtXBt dμ(t) - ∫Ω At dμ(t)X ∫Ω B t dμ(t) ||| ≤ ||D - C|| · ||F - E||/4 · |||X|||. More general results for arbitrary bounded fields are also given. © ELEMEN. | en |
dc.relation.ispartof | Mathematical Inequalities and Applications | en |
dc.subject | Elementary operators | en |
dc.subject | Gel'fand integral | en |
dc.subject | Grüss type inequality | en |
dc.subject | Hilbert modules | en |
dc.subject | Landau type inequality | en |
dc.subject | Norm inequality | en |
dc.title | Landau and Grüss type inequalities for inner product type integral transformers in norm ideals | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.7153/mia-16-08 | - |
dc.identifier.scopus | 2-s2.0-84875667639 | - |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/84875667639 | - |
dc.contributor.affiliation | Real and Functional Analysis | en_US |
dc.contributor.affiliation | Real and Functional Analysis | en_US |
dc.relation.firstpage | 109 | en |
dc.relation.lastpage | 125 | en |
dc.relation.volume | 16 | en |
dc.relation.issue | 1 | en |
item.fulltext | No Fulltext | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | Real and Functional Analysis | - |
crisitem.author.dept | Real and Functional Analysis | - |
crisitem.author.orcid | 0000-0003-2084-7180 | - |
crisitem.author.orcid | 0000-0001-5652-0038 | - |
Appears in Collections: | Research outputs |
SCOPUSTM
Citations
21
checked on Nov 9, 2024
Page view(s)
10
checked on Nov 14, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.