Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/402
Title: Bergman spaces on the complement of a lattice
Authors: Arsenović, Miloš 
Kečkić, Dragoljub 
Affiliations: Mathematical Analysis 
Mathematical Analysis 
Issue Date: 1-Nov-2003
Journal: Archiv der Mathematik
Abstract: 
We investigate Bergman spaces Bp (Ω), where Ω = C / (Z + iZ) and show that Bp = {0} for p ≥ 2 and {0} ≠ B q ⊂ Bp for 2/(n + 1) ≤ q < p < 2/n. Further, for each 0 < p < 2 there is a non-trivial f ∈ Bp tending to zero at infinity at any prescribed rate. We also give conditions on the Mittag-Leffler expansion of f necessary for f ∈ Bp.
URI: https://research.matf.bg.ac.rs/handle/123456789/402
ISSN: 0003889X
DOI: 10.1007/s00013-003-4699-8
Appears in Collections:Research outputs

Show full item record

SCOPUSTM   
Citations

1
checked on Nov 8, 2024

Page view(s)

21
checked on Nov 14, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.