Please use this identifier to cite or link to this item:
https://research.matf.bg.ac.rs/handle/123456789/402
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Arsenović, Miloš | en_US |
dc.contributor.author | Kečkić, Dragoljub | en_US |
dc.date.accessioned | 2022-08-10T20:28:30Z | - |
dc.date.available | 2022-08-10T20:28:30Z | - |
dc.date.issued | 2003-11-01 | - |
dc.identifier.issn | 0003889X | en |
dc.identifier.uri | https://research.matf.bg.ac.rs/handle/123456789/402 | - |
dc.description.abstract | We investigate Bergman spaces Bp (Ω), where Ω = C / (Z + iZ) and show that Bp = {0} for p ≥ 2 and {0} ≠ B q ⊂ Bp for 2/(n + 1) ≤ q < p < 2/n. Further, for each 0 < p < 2 there is a non-trivial f ∈ Bp tending to zero at infinity at any prescribed rate. We also give conditions on the Mittag-Leffler expansion of f necessary for f ∈ Bp. | en |
dc.relation.ispartof | Archiv der Mathematik | en |
dc.title | Bergman spaces on the complement of a lattice | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1007/s00013-003-4699-8 | - |
dc.identifier.scopus | 2-s2.0-0348198338 | - |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/0348198338 | - |
dc.contributor.affiliation | Mathematical Analysis | en_US |
dc.contributor.affiliation | Mathematical Analysis | en_US |
dc.relation.firstpage | 575 | en |
dc.relation.lastpage | 584 | en |
dc.relation.volume | 81 | en |
dc.relation.issue | 5 | en |
item.openairetype | Article | - |
item.cerifentitytype | Publications | - |
item.fulltext | No Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.grantfulltext | none | - |
crisitem.author.dept | Mathematical Analysis | - |
crisitem.author.dept | Mathematical Analysis | - |
crisitem.author.orcid | 0000-0002-5450-2407 | - |
crisitem.author.orcid | 0000-0001-7981-4696 | - |
Appears in Collections: | Research outputs |
SCOPUSTM
Citations
1
checked on Mar 27, 2025
Page view(s)
22
checked on Jan 19, 2025
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.