Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/395
Title: Gateaux derivative of B(H) norm
Authors: Kečkić, Dragoljub 
Affiliations: Mathematical Analysis 
Keywords: Gateaux derivative;Orthogonality;Smoothness
Issue Date: 1-Jan-2005
Journal: Proceedings of the American Mathematical Society
Abstract: 
We prove that for Hilbert space operators X and Y, it follows that lim t→0+ ||X+tY|| - ||X||/t=1/||X||inf ε>0 φsupφ ∈Hε||φ||=1 Re〈Yφ,Xφ〉, where H ε =E X*X ((||X|| -ε) 2 , ||X|| 2 ). Using the concept of φ-Gateaux derivative, we apply this result to characterize orthogonality in the sense of James in B(H), and to give an easy proof of the characterization of smooth points in B(H). © 2005 American Mathematical Society.
URI: https://research.matf.bg.ac.rs/handle/123456789/395
ISSN: 00029939
DOI: 10.1090/S0002-9939-05-07746-4
Appears in Collections:Research outputs

Show full item record

SCOPUSTM   
Citations

20
checked on Jan 13, 2025

Page view(s)

21
checked on Jan 18, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.