Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/395
DC FieldValueLanguage
dc.contributor.authorKečkić, Dragoljuben_US
dc.date.accessioned2022-08-10T20:28:29Z-
dc.date.available2022-08-10T20:28:29Z-
dc.date.issued2005-01-01-
dc.identifier.issn00029939en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/395-
dc.description.abstractWe prove that for Hilbert space operators X and Y, it follows that lim t→0+ ||X+tY|| - ||X||/t=1/||X||inf ε>0 φsupφ ∈Hε||φ||=1 Re〈Yφ,Xφ〉, where H ε =E X*X ((||X|| -ε) 2 , ||X|| 2 ). Using the concept of φ-Gateaux derivative, we apply this result to characterize orthogonality in the sense of James in B(H), and to give an easy proof of the characterization of smooth points in B(H). © 2005 American Mathematical Society.en
dc.relation.ispartofProceedings of the American Mathematical Societyen
dc.subjectGateaux derivativeen
dc.subjectOrthogonalityen
dc.subjectSmoothnessen
dc.titleGateaux derivative of B(H) normen_US
dc.typeArticleen_US
dc.identifier.doi10.1090/S0002-9939-05-07746-4-
dc.identifier.scopus2-s2.0-22544484772-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/22544484772-
dc.contributor.affiliationMathematical Analysisen_US
dc.relation.firstpage2061en
dc.relation.lastpage2067en
dc.relation.volume133en
dc.relation.issue7en
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.orcid0000-0001-7981-4696-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

20
checked on Nov 11, 2024

Page view(s)

20
checked on Nov 14, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.