Please use this identifier to cite or link to this item:
https://research.matf.bg.ac.rs/handle/123456789/395
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kečkić, Dragoljub | en_US |
dc.date.accessioned | 2022-08-10T20:28:29Z | - |
dc.date.available | 2022-08-10T20:28:29Z | - |
dc.date.issued | 2005-01-01 | - |
dc.identifier.issn | 00029939 | en |
dc.identifier.uri | https://research.matf.bg.ac.rs/handle/123456789/395 | - |
dc.description.abstract | We prove that for Hilbert space operators X and Y, it follows that lim t→0+ ||X+tY|| - ||X||/t=1/||X||inf ε>0 φsupφ ∈Hε||φ||=1 Re〈Yφ,Xφ〉, where H ε =E X*X ((||X|| -ε) 2 , ||X|| 2 ). Using the concept of φ-Gateaux derivative, we apply this result to characterize orthogonality in the sense of James in B(H), and to give an easy proof of the characterization of smooth points in B(H). © 2005 American Mathematical Society. | en |
dc.relation.ispartof | Proceedings of the American Mathematical Society | en |
dc.subject | Gateaux derivative | en |
dc.subject | Orthogonality | en |
dc.subject | Smoothness | en |
dc.title | Gateaux derivative of B(H) norm | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1090/S0002-9939-05-07746-4 | - |
dc.identifier.scopus | 2-s2.0-22544484772 | - |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/22544484772 | - |
dc.contributor.affiliation | Mathematical Analysis | en_US |
dc.relation.firstpage | 2061 | en |
dc.relation.lastpage | 2067 | en |
dc.relation.volume | 133 | en |
dc.relation.issue | 7 | en |
item.fulltext | No Fulltext | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
crisitem.author.orcid | 0000-0001-7981-4696 | - |
Appears in Collections: | Research outputs |
SCOPUSTM
Citations
20
checked on Nov 11, 2024
Page view(s)
20
checked on Nov 14, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.