Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/390
Title: Estimating a tail of the mixture of log-normal and inverse Gaussian distribution
Authors: Kočović, Jelena
Ćobajšić Rajić, Vesna
Jovanović, Milan 
Affiliations: Probability and Mathematical Statistics 
Keywords: extreme value theory;generalized Pareto distribution;Gumbel distribution;high excess layers;loss distributions
Issue Date: 1-Jan-2015
Journal: Scandinavian Actuarial Journal
Abstract: 
In this paper, we estimate a tail of the mixture of log-normal and inverse Gaussian distribution in order to model extreme historical losses. Good estimate of the tail is essential in reinsurance for choosing or pricing high-excess layer. Method is supported by extreme value theory. We derive useful estimates of value-at-risk and expected shortfall. We apply this methodology to some fire insurance data.
URI: https://research.matf.bg.ac.rs/handle/123456789/390
ISSN: 03461238
DOI: 10.1080/03461238.2013.775665
Appears in Collections:Research outputs

Show full item record

SCOPUSTM   
Citations

5
checked on Jan 13, 2025

Page view(s)

17
checked on Jan 17, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.