Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/390
DC FieldValueLanguage
dc.contributor.authorKočović, Jelenaen_US
dc.contributor.authorĆobajšić Rajić, Vesnaen_US
dc.contributor.authorJovanović, Milanen_US
dc.date.accessioned2022-08-10T20:07:42Z-
dc.date.available2022-08-10T20:07:42Z-
dc.date.issued2015-01-01-
dc.identifier.issn03461238-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/390-
dc.description.abstractIn this paper, we estimate a tail of the mixture of log-normal and inverse Gaussian distribution in order to model extreme historical losses. Good estimate of the tail is essential in reinsurance for choosing or pricing high-excess layer. Method is supported by extreme value theory. We derive useful estimates of value-at-risk and expected shortfall. We apply this methodology to some fire insurance data.en_US
dc.relation.ispartofScandinavian Actuarial Journalen_US
dc.subjectextreme value theoryen_US
dc.subjectgeneralized Pareto distributionen_US
dc.subjectGumbel distributionen_US
dc.subjecthigh excess layersen_US
dc.subjectloss distributionsen_US
dc.titleEstimating a tail of the mixture of log-normal and inverse Gaussian distributionen_US
dc.typeArticleen_US
dc.identifier.doi10.1080/03461238.2013.775665-
dc.identifier.scopus2-s2.0-84912071946-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/84912071946-
dc.contributor.affiliationProbability and Mathematical Statisticsen_US
dc.relation.firstpage49en_US
dc.relation.lastpage58en_US
dc.relation.volume2015en_US
dc.relation.issue1en_US
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptProbability and Mathematical Statistics-
crisitem.author.orcid0000-0001-5512-0956-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

5
checked on Nov 8, 2024

Page view(s)

17
checked on Nov 14, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.