Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/3081
Title: Sequences of minimal surfaces in $S^{2n+1}$
Authors: Antić, Miroslava 
Vrancken, Luc
Affiliations: Geometry 
Issue Date: 2008
Rank: M34
Publisher: Novi Sad : Prirodno-matematički fakultet
Related Publication(s): XII Srpski matematicki kongres : knjiga apstrakata
Conference: Srpski matematički kongres SMAK (12 ; 2008 ; Novi Sad)
Abstract: 
Let $M$ be minimal surface immersed into odd-dimensional sphere $S^{2n+1}$. In Equivariant minimal immersions of $S^2$ into $S^{2m}$ (1) Ejiri introduced a notion of higher order ellipses of curvature. In this paper, for surface $M$ whose first $(n-2)$ ellipses of curvature are circles we construct a sequence of minimal surfaces which satisfies same condition on ellipses of curvature and we investigate if and when such two surfaces are congruent via an orientation reversing isometry.
URI: https://research.matf.bg.ac.rs/handle/123456789/3081
Appears in Collections:Research outputs

Show full item record

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.