Please use this identifier to cite or link to this item:
https://research.matf.bg.ac.rs/handle/123456789/3081| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Antić, Miroslava | en_US |
| dc.contributor.author | Vrancken, Luc | en_US |
| dc.date.accessioned | 2026-01-15T15:17:21Z | - |
| dc.date.available | 2026-01-15T15:17:21Z | - |
| dc.date.issued | 2008 | - |
| dc.identifier.uri | https://research.matf.bg.ac.rs/handle/123456789/3081 | - |
| dc.description.abstract | Let $M$ be minimal surface immersed into odd-dimensional sphere $S^{2n+1}$. In <i>Equivariant minimal immersions of $S^2$ into $S^{2m}$</i> (1) Ejiri introduced a notion of higher order ellipses of curvature. In this paper, for surface $M$ whose first $(n-2)$ ellipses of curvature are circles we construct a sequence of minimal surfaces which satisfies same condition on ellipses of curvature and we investigate if and when such two surfaces are congruent via an orientation reversing isometry. | en_US |
| dc.language.iso | en | en_US |
| dc.publisher | Novi Sad : Prirodno-matematički fakultet | en_US |
| dc.title | Sequences of minimal surfaces in $S^{2n+1}$ | en_US |
| dc.type | Conference Object | en_US |
| dc.relation.conference | Srpski matematički kongres SMAK (12 ; 2008 ; Novi Sad) | en_US |
| dc.relation.publication | XII Srpski matematicki kongres : knjiga apstrakata | en_US |
| dc.contributor.affiliation | Geometry | en_US |
| dc.description.rank | M34 | en_US |
| dc.relation.firstpage | 63 | en_US |
| dc.relation.lastpage | 63 | en_US |
| item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
| item.grantfulltext | none | - |
| item.cerifentitytype | Publications | - |
| item.fulltext | No Fulltext | - |
| item.openairetype | Conference Object | - |
| item.languageiso639-1 | en | - |
| crisitem.author.dept | Geometry | - |
| crisitem.author.orcid | 0000-0002-2111-7174 | - |
| Appears in Collections: | Research outputs | |
Google ScholarTM
Check
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.