Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/3081
DC FieldValueLanguage
dc.contributor.authorAntić, Miroslavaen_US
dc.contributor.authorVrancken, Lucen_US
dc.date.accessioned2026-01-15T15:17:21Z-
dc.date.available2026-01-15T15:17:21Z-
dc.date.issued2008-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/3081-
dc.description.abstractLet $M$ be minimal surface immersed into odd-dimensional sphere $S^{2n+1}$. In <i>Equivariant minimal immersions of $S^2$ into $S^{2m}$</i> (1) Ejiri introduced a notion of higher order ellipses of curvature. In this paper, for surface $M$ whose first $(n-2)$ ellipses of curvature are circles we construct a sequence of minimal surfaces which satisfies same condition on ellipses of curvature and we investigate if and when such two surfaces are congruent via an orientation reversing isometry.en_US
dc.language.isoenen_US
dc.publisherNovi Sad : Prirodno-matematički fakulteten_US
dc.titleSequences of minimal surfaces in $S^{2n+1}$en_US
dc.typeConference Objecten_US
dc.relation.conferenceSrpski matematički kongres SMAK (12 ; 2008 ; Novi Sad)en_US
dc.relation.publicationXII Srpski matematicki kongres : knjiga apstrakataen_US
dc.contributor.affiliationGeometryen_US
dc.description.rankM34en_US
dc.relation.firstpage63en_US
dc.relation.lastpage63en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.openairetypeConference Object-
item.languageiso639-1en-
crisitem.author.deptGeometry-
crisitem.author.orcid0000-0002-2111-7174-
Appears in Collections:Research outputs
Show simple item record

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.