Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/2263
Title: Hilbert matrix operator on Besov spaces
Authors: Jevtić, Miroljub
Karapetrović, Boban 
Affiliations: Real and Complex Analysis 
Keywords: Bergman spaces;Bloch spaces and Besov spaces;Hardy spaces;Hilbert matrix
Issue Date: 1-Jan-2017
Rank: M22
Publisher: Debrecen : Univ. Debrecen, Inst. Mathematics
Journal: Publicationes Mathematicae Debrecen
Abstract: 
We show that if 0 < ≤ ∞ 1, 1 < ≤ ∞ 1, then the Besov spaces H1+/=p p,q,1 are not mapped by the Hilbert matrix operator H into the Bloch space B. As a corollary, we have that the space VMOA is also not mapped by H into the Bloch space B. In [7], it is shown that if a function f(z) = ∑κ=0 f(κ)zκ, holomorphic in the unit disc, belongs to the logarithmically weighted Bergman space A2 logα,α > 2, then ∑κ=0 |f(κ)|/κ+1 < ∞. We show that this implication holds only when α > 1. In [7], it is also shown that if α > 3, then H maps A2 logα into the Bergman space A2. We improve this result by proving that H maps A2 logα into A2 when α > 2.
URI: https://research.matf.bg.ac.rs/handle/123456789/2263
ISSN: 00333883
DOI: 10.5486/PMD.2017.7518
Appears in Collections:Research outputs

Show full item record

SCOPUSTM   
Citations

7
checked on Jul 28, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.