Please use this identifier to cite or link to this item:
https://research.matf.bg.ac.rs/handle/123456789/2263
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Jevtić, Miroljub | en_US |
dc.contributor.author | Karapetrović, Boban | en_US |
dc.date.accessioned | 2025-07-21T12:36:05Z | - |
dc.date.available | 2025-07-21T12:36:05Z | - |
dc.date.issued | 2017-01-01 | - |
dc.identifier.issn | 00333883 | - |
dc.identifier.uri | https://research.matf.bg.ac.rs/handle/123456789/2263 | - |
dc.description.abstract | We show that if 0 < ≤ ∞ 1, 1 < ≤ ∞ 1, then the Besov spaces H<inf>1+/=p</inf> <sup>p,q,1</sup> are not mapped by the Hilbert matrix operator H into the Bloch space B. As a corollary, we have that the space VMOA is also not mapped by H into the Bloch space B. In [7], it is shown that if a function f(z) = ∑<inf>κ=0</inf><sup>∞</sup> f(κ)z<sup>κ</sup>, holomorphic in the unit disc, belongs to the logarithmically weighted Bergman space A<sup>2</sup> <inf>logα</inf>,α > 2, then ∑<inf>κ=0</inf><sup>∞</sup> |f(κ)|/κ+1 < ∞. We show that this implication holds only when α > 1. In [7], it is also shown that if α > 3, then H maps A<sup>2</sup> <inf>logα</inf> into the Bergman space A<sup>2</sup>. We improve this result by proving that H maps A<inf>2</inf> <inf>logα</inf> into A<sup>2</sup> when α > 2. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Debrecen : Univ. Debrecen, Inst. Mathematics | en_US |
dc.relation.ispartof | Publicationes Mathematicae Debrecen | en_US |
dc.subject | Bergman spaces | en_US |
dc.subject | Bloch spaces and Besov spaces | en_US |
dc.subject | Hardy spaces | en_US |
dc.subject | Hilbert matrix | en_US |
dc.title | Hilbert matrix operator on Besov spaces | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.5486/PMD.2017.7518 | - |
dc.identifier.scopus | 2-s2.0-85033998094 | - |
dc.identifier.isi | 000404662900006 | - |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/85033998094 | - |
dc.contributor.affiliation | Real and Complex Analysis | en_US |
dc.relation.issn | 0033-3883 | en_US |
dc.description.rank | M22 | en_US |
dc.relation.firstpage | 359 | en_US |
dc.relation.lastpage | 371 | en_US |
dc.relation.volume | 90 | en_US |
dc.relation.issue | 3-4 | en_US |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
item.languageiso639-1 | en | - |
item.openairetype | Article | - |
item.fulltext | No Fulltext | - |
item.grantfulltext | none | - |
crisitem.author.dept | Real and Complex Analysis | - |
crisitem.author.orcid | 0000-0001-5296-8070 | - |
Appears in Collections: | Research outputs |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.