Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/2248
Title: Norm of the Hilbert matrix operator on the weighted Bergman spaces
Authors: Karapetrović, Boban 
Affiliations: Real and Complex Analysis 
Issue Date: 1-Sep-2018
Rank: M22
Publisher: Cambridge Core
Journal: Glasgow Mathematical Journal
Abstract: 
We find the lower bound for the norm of the Hilbert matrix operator H on the weighted Bergman space Ap,α ||H||Ap,α→ Ap,α≥ π/sin(α+2)π/p for lt;α+2 < p. We show that if 4 ≤ 2(α + 2) ≤ p, then ||H||Ap,α → Ap,α = , while if 2 ≤ α +2 < p < 2(α+2), upper bound for the norm ||H||Ap,α → Ap,α, better then known, is obtained.
URI: https://research.matf.bg.ac.rs/handle/123456789/2248
ISSN: 00170895
DOI: 10.1017/S0017089517000258
Appears in Collections:Research outputs

Show full item record

SCOPUSTM   
Citations

13
checked on Jul 25, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.