Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/2248
DC FieldValueLanguage
dc.contributor.authorKarapetrović, Bobanen_US
dc.date.accessioned2025-07-18T15:10:37Z-
dc.date.available2025-07-18T15:10:37Z-
dc.date.issued2018-09-01-
dc.identifier.issn00170895-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/2248-
dc.description.abstractWe find the lower bound for the norm of the Hilbert matrix operator H on the weighted Bergman space A<sup>p,α</sup> ||H||A<sup>p,α</sup>→ A<sup>p,α</sup>≥ π/sin(α+2)π/p for lt;α+2 < p. We show that if 4 ≤ 2(α + 2) ≤ p, then ||H||A<sup>p,α</sup> → A<sup>p,α</sup> = , while if 2 ≤ α +2 < p < 2(α+2), upper bound for the norm ||H||A<sup>p,α</sup> → A<sup>p,α</sup>, better then known, is obtained.en_US
dc.language.isoenen_US
dc.publisherCambridge Coreen_US
dc.relation.ispartofGlasgow Mathematical Journalen_US
dc.titleNorm of the Hilbert matrix operator on the weighted Bergman spacesen_US
dc.typeArticleen_US
dc.identifier.doi10.1017/S0017089517000258-
dc.identifier.scopus2-s2.0-85032182258-
dc.identifier.isi000439431400001-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85032182258-
dc.contributor.affiliationReal and Complex Analysisen_US
dc.relation.issn0017-0895en_US
dc.description.rankM22en_US
dc.relation.firstpage513en_US
dc.relation.lastpage525en_US
dc.relation.volume60en_US
dc.relation.issue3en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.openairetypeArticle-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.author.deptReal and Complex Analysis-
crisitem.author.orcid0000-0001-5296-8070-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

13
checked on Jul 25, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.