Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/1394
Title: Perfect Matching Complexes of Honeycomb Graphs
Authors: Bayer, Margaret
Jelić Milutinović, Marija 
Vega, Julianne
Affiliations: Topology 
Keywords: homotopy type;honeycomb graph;perfect matching;plane partition;simplicial complex
Issue Date: 1-Jan-2023
Rank: M22
Journal: Electronic Journal of Combinatorics
Abstract: 
The perfect matching complex of a graph is the simplicial complex on the edge set of the graph with facets corresponding to perfect matchings of the graph. This paper studies the perfect matching complexes, Mp(Hk×m×n), of honeycomb graphs. For k = 1, Mp(H1×m×n) is contractible unless n ≤ m = 2, in which case it is homotopy equivalent to the (n − 1)-sphere. Also, Mp(H2×2×2) is homotopy equivalent to the wedge of two 3-spheres. The proofs use discrete Morse theory.
URI: https://research.matf.bg.ac.rs/handle/123456789/1394
DOI: 10.37236/11525
Rights: Attribution-NoDerivs 3.0 United States
Appears in Collections:Research outputs

Files in This Item:
File Description SizeFormat
11525-PDF file-45306-4-10-20230610.pdf620.42 kBAdobe PDF
View/Open
Show full item record

Page view(s)

10
checked on Dec 24, 2024

Google ScholarTM

Check

Altmetric

Altmetric


This item is licensed under a Creative Commons License Creative Commons