Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/1394
DC FieldValueLanguage
dc.contributor.authorBayer, Margareten_US
dc.contributor.authorJelić Milutinović, Marijaen_US
dc.contributor.authorVega, Julianneen_US
dc.date.accessioned2024-11-28T13:53:40Z-
dc.date.available2024-11-28T13:53:40Z-
dc.date.issued2023-01-01-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/1394-
dc.description.abstractThe perfect matching complex of a graph is the simplicial complex on the edge set of the graph with facets corresponding to perfect matchings of the graph. This paper studies the perfect matching complexes, Mp(Hk×m×n), of honeycomb graphs. For k = 1, Mp(H1×m×n) is contractible unless n ≤ m = 2, in which case it is homotopy equivalent to the (n − 1)-sphere. Also, Mp(H2×2×2) is homotopy equivalent to the wedge of two 3-spheres. The proofs use discrete Morse theory.en_US
dc.language.isoenen_US
dc.relation.ispartofElectronic Journal of Combinatoricsen_US
dc.rightsAttribution-NoDerivs 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nd/3.0/us/*
dc.subjecthomotopy typeen_US
dc.subjecthoneycomb graphen_US
dc.subjectperfect matchingen_US
dc.subjectplane partitionen_US
dc.subjectsimplicial complexen_US
dc.titlePerfect Matching Complexes of Honeycomb Graphsen_US
dc.typeArticleen_US
dc.identifier.doi10.37236/11525-
dc.identifier.scopus2-s2.0-85161987445-
dc.identifier.isi001015078800001-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85161987445-
dc.contributor.affiliationTopologyen_US
dc.relation.issn1077-8926en_US
dc.description.rankM22en_US
dc.relation.firstpageArticle no. P2.45en_US
dc.relation.volume30en_US
dc.relation.issue2en_US
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.grantfulltextopen-
item.openairetypeArticle-
crisitem.author.deptTopology-
crisitem.author.orcid0000-0002-6578-3224-
Appears in Collections:Research outputs
Files in This Item:
File Description SizeFormat
11525-PDF file-45306-4-10-20230610.pdf620.42 kBAdobe PDF
View/Open
Show simple item record

Page view(s)

10
checked on Dec 24, 2024

Google ScholarTM

Check

Altmetric

Altmetric


This item is licensed under a Creative Commons License Creative Commons