Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/1289
Title: Integrable systems in cosymplectic geometry
Authors: Jovanović, Božidar
Lukić, Katarina 
Keywords: action-angle coordinates;evaluation vector fields;noncommutative integrability;Reeb flows
Issue Date: 6-Jan-2023
Rank: M21
Publisher: IOP Publishing
Journal: Journal of Physics A: Mathematical and Theoretical
Abstract: 
Motivated by the time-dependent Hamiltonian dynamics, we extend the notion of Arnold-Liouville and noncommutative integrability of Hamiltonian systems on symplectic manifolds to that on cosymplectic manifolds. We prove a variant of the non-commutative integrability for evaluation and Reeb vector fields on cosymplectic manifolds and provide a construction of cosymplectic action-angle variables.
Description: 
‘This is the version of the article before peer review or editing, as submitted by an author to Journal of Physics A: Mathematical and Theoretical.  IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it.  The Version of Record is available online at 10.1088/1751-8121/acafb4
URI: https://research.matf.bg.ac.rs/handle/123456789/1289
ISSN: 17518113
DOI: 10.1088/1751-8121/acafb4
Appears in Collections:Research outputs

Files in This Item:
File Description SizeFormat Existing users please
2212.09427v1.pdf237.75 kBAdobe PDF
    Request a copy
Show full item record

SCOPUSTM   
Citations

1
checked on Nov 10, 2024

Page view(s)

18
checked on Nov 15, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.