Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/1289
DC FieldValueLanguage
dc.contributor.authorJovanović, Božidaren_US
dc.contributor.authorLukić, Katarinaen_US
dc.date.accessioned2024-06-03T14:29:19Z-
dc.date.available2024-06-03T14:29:19Z-
dc.date.issued2023-01-06-
dc.identifier.issn17518113-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/1289-
dc.description‘This is the version of the article before peer review or editing, as submitted by an author to Journal of Physics A: Mathematical and Theoretical.  IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it.  The Version of Record is available online at <a href="https://doi.org/10.1088/1751-8121/acafb4">10.1088/1751-8121/acafb4</a>en_US
dc.description.abstractMotivated by the time-dependent Hamiltonian dynamics, we extend the notion of Arnold-Liouville and noncommutative integrability of Hamiltonian systems on symplectic manifolds to that on cosymplectic manifolds. We prove a variant of the non-commutative integrability for evaluation and Reeb vector fields on cosymplectic manifolds and provide a construction of cosymplectic action-angle variables.en_US
dc.language.isoenen_US
dc.publisherIOP Publishingen_US
dc.relation.ispartofJournal of Physics A: Mathematical and Theoreticalen_US
dc.subjectaction-angle coordinatesen_US
dc.subjectevaluation vector fieldsen_US
dc.subjectnoncommutative integrabilityen_US
dc.subjectReeb flowsen_US
dc.titleIntegrable systems in cosymplectic geometryen_US
dc.typeArticleen_US
dc.identifier.doi10.1088/1751-8121/acafb4-
dc.identifier.scopus2-s2.0-85146503791-
dc.identifier.isi000920116200001-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85146503791-
dc.relation.issn1751-8113en_US
dc.description.rankM21en_US
dc.relation.firstpageArticle no. 015201en_US
dc.relation.volume56en_US
dc.relation.issue1en_US
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.openairetypeArticle-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptGeometry-
crisitem.author.orcid0000-0001-7638-8994-
Appears in Collections:Research outputs
Files in This Item:
File Description SizeFormat Existing users please
2212.09427v1.pdf237.75 kBAdobe PDF
    Request a copy
Show simple item record

SCOPUSTM   
Citations

1
checked on Nov 10, 2024

Page view(s)

18
checked on Nov 15, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.