Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/126
Title: On the polynomial entropy for morse gradient systems
Authors: Katić, Jelena 
Perić, Milan
Affiliations: Differential Equations 
Keywords: Morse gradient system;polynomial entropy
Issue Date: 26-Jun-2019
Journal: Mathematica Slovaca
Abstract: 
We adapt the construction from [HAUSEUX, L. - LE ROUX, F.: Polynomial entropy of Brouwer homeomorphisms, arXiv:1712.01502 (2017)] to obtain an easy method for computing the polynomial entropy for a continuous map of a compact metric space with finitely many non-wandering points. We compute the maximal cardinality of a singular set of Morse negative gradient systems and apply this method to compute the polynomial entropy for Morse gradient systems on surfaces.
URI: https://research.matf.bg.ac.rs/handle/123456789/126
ISSN: 01399918
DOI: 10.1515/ms-2017-0251
Appears in Collections:Research outputs

Show full item record

SCOPUSTM   
Citations

5
checked on Nov 11, 2024

Page view(s)

22
checked on Nov 14, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.