Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/126
DC FieldValueLanguage
dc.contributor.authorKatić, Jelenaen_US
dc.contributor.authorPerić, Milanen_US
dc.date.accessioned2022-08-06T16:11:12Z-
dc.date.available2022-08-06T16:11:12Z-
dc.date.issued2019-06-26-
dc.identifier.issn01399918en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/126-
dc.description.abstractWe adapt the construction from [HAUSEUX, L. - LE ROUX, F.: Polynomial entropy of Brouwer homeomorphisms, arXiv:1712.01502 (2017)] to obtain an easy method for computing the polynomial entropy for a continuous map of a compact metric space with finitely many non-wandering points. We compute the maximal cardinality of a singular set of Morse negative gradient systems and apply this method to compute the polynomial entropy for Morse gradient systems on surfaces.en
dc.relation.ispartofMathematica Slovacaen
dc.subjectMorse gradient systemen
dc.subjectpolynomial entropyen
dc.titleOn the polynomial entropy for morse gradient systemsen_US
dc.typeArticleen_US
dc.identifier.doi10.1515/ms-2017-0251-
dc.identifier.scopus2-s2.0-85066834209-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85066834209-
dc.contributor.affiliationDifferential Equationsen_US
dc.relation.firstpage611en
dc.relation.lastpage624en
dc.relation.volume69en
dc.relation.issue3en
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.orcid0000-0001-8927-0506-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

5
checked on Nov 11, 2024

Page view(s)

22
checked on Nov 14, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.