Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/1251
Title: On the topological complexity and zero-divisor cup-length of real Grassmannians
Authors: Radovanović, Marko 
Affiliations: Algebra and Mathematical Logic 
Keywords: Grassmann manifold;Topological complexity;zero-divisor cup-length
Issue Date: 11-Apr-2023
Rank: M21
Publisher: Cambridge University press
Journal: Proceedings of the Royal Society of Edinburgh Section A: Mathematics
Abstract: 
Topological complexity naturally appears in the motion planning in robotics. In this paper we consider the problem of finding topological complexity of real Grassmann manifolds. We use cohomology methods to give estimates on the zero-divisor cup-length of for various 2 ≤ k, which in turn give us lower bounds on topological complexity. Our results correct and improve several results from Pavešić (Proc. Roy. Soc. Edinb. A 151 (2021), 2013-2029).
Description: 
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh
URI: https://research.matf.bg.ac.rs/handle/123456789/1251
ISSN: 03082105
DOI: 10.1017/prm.2022.15
Rights: Attribution 3.0 United States
Appears in Collections:Research outputs

Files in This Item:
File Description SizeFormat
Procedmathsocvol153iss2y2023.pdf404.78 kBAdobe PDF
View/Open
Show full item record

SCOPUSTM   
Citations

1
checked on Dec 22, 2024

Page view(s)

75
checked on Dec 23, 2024

Download(s)

2
checked on Dec 23, 2024

Google ScholarTM

Check

Altmetric

Altmetric


This item is licensed under a Creative Commons License Creative Commons