Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/1251
DC FieldValueLanguage
dc.contributor.authorRadovanović, Markoen_US
dc.date.accessioned2023-11-22T12:52:06Z-
dc.date.available2023-11-22T12:52:06Z-
dc.date.issued2023-04-11-
dc.identifier.issn03082105-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/1251-
dc.descriptionCopyright © The Author(s), 2022. Published by Cambridge University Press on behalf of The Royal Society of Edinburghen_US
dc.description.abstractTopological complexity naturally appears in the motion planning in robotics. In this paper we consider the problem of finding topological complexity of real Grassmann manifolds. We use cohomology methods to give estimates on the zero-divisor cup-length of for various 2 ≤ k, which in turn give us lower bounds on topological complexity. Our results correct and improve several results from Pavešić (Proc. Roy. Soc. Edinb. A 151 (2021), 2013-2029).en_US
dc.publisherCambridge University pressen_US
dc.relation.ispartofProceedings of the Royal Society of Edinburgh Section A: Mathematicsen_US
dc.rightsAttribution 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/us/*
dc.subjectGrassmann manifolden_US
dc.subjectTopological complexityen_US
dc.subjectzero-divisor cup-lengthen_US
dc.titleOn the topological complexity and zero-divisor cup-length of real Grassmanniansen_US
dc.typeArticleen_US
dc.identifier.doi10.1017/prm.2022.15-
dc.identifier.scopus2-s2.0-85128143653-
dc.identifier.isi000776789300001-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85128143653-
dc.contributor.affiliationAlgebra and Mathematical Logicen_US
dc.relation.issn0308-2105en_US
dc.description.rankM21en_US
dc.relation.firstpage702en_US
dc.relation.lastpage717en_US
dc.relation.volume153en_US
dc.relation.issue2en_US
item.fulltextWith Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.grantfulltextopen-
item.openairetypeArticle-
crisitem.author.deptAlgebra and Mathematical Logic-
crisitem.author.orcid0000-0002-6990-1793-
Appears in Collections:Research outputs
Files in This Item:
File Description SizeFormat
Procedmathsocvol153iss2y2023.pdf404.78 kBAdobe PDF
View/Open
Show simple item record

SCOPUSTM   
Citations

1
checked on Dec 22, 2024

Page view(s)

75
checked on Dec 24, 2024

Download(s)

2
checked on Dec 24, 2024

Google ScholarTM

Check

Altmetric

Altmetric


This item is licensed under a Creative Commons License Creative Commons