Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/986
Title: Moduli of Continuity of Harmonic Quasiregular Mappings in B<sup>n</sup>
Authors: Arsenović, Miloš 
Božin, Vladimir 
Manojlović, Vesna
Affiliations: Mathematical Analysis 
Real and Complex Analysis 
Keywords: Harmonic mappings;Modulus of continuity;Quasiregular mappings
Issue Date: 1-Apr-2011
Journal: Potential Analysis
Abstract: 
We prove that ωu(δ) ≤ Cωf(δ), where B̄ → ℝn is the harmonic extension of a continuous map f:Sn-1 → ℝn, if u is a K-quasiregular map. Here C is a constant depending only on n, ωf and K and ωh denotes the modulus of continuity of h. © 2010 Springer Science+Business Media B.V.
URI: https://research.matf.bg.ac.rs/handle/123456789/986
ISSN: 09262601
DOI: 10.1007/s11118-010-9195-8
Appears in Collections:Research outputs

Show full item record

SCOPUSTM   
Citations

11
checked on Nov 9, 2024

Page view(s)

9
checked on Nov 14, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.