Please use this identifier to cite or link to this item:
https://research.matf.bg.ac.rs/handle/123456789/774
Title: | Spectral determination of graphs whose components are paths and cycles | Authors: | Cvetković, Dragoš Simić, Slobodan K. Stanić, Zoran |
Affiliations: | Numerical Mathematics and Optimization | Keywords: | Cycles;Graph eigenvalues;Paths;Spectral determination | Issue Date: | 1-Jun-2010 | Journal: | Computers and Mathematics with Applications | Abstract: | We consider the class of graphs each of whose components is either a path or a cycle. We classify the graphs from the class considered into those which are determined and those which are not determined by the adjacency spectrum. In addition, we compare the result with the corresponding results for the Laplacian and the signless Laplacian spectra. It turns out that the signless Laplacian spectrum performs the best, confirming some expectations from the literature. © 2010 Elsevier Ltd. All rights reserved. |
URI: | https://research.matf.bg.ac.rs/handle/123456789/774 | ISSN: | 08981221 | DOI: | 10.1016/j.camwa.2010.04.021 |
Appears in Collections: | Research outputs |
Show full item record
SCOPUSTM
Citations
12
checked on Nov 10, 2024
Page view(s)
10
checked on Nov 15, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.