Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/692
Title: An extended eigenvalue-free interval for the eccentricity matrix of threshold graphs
Authors: Anđelić, Milica
Fonseca, Carlos M.da
Koledin, Tamara
Stanić, Zoran 
Affiliations: Numerical Mathematics and Optimization 
Keywords: Eccentricity matrix;Eigenvalue-free interval;Threshold graph;Tridiagonal matrix
Issue Date: Feb-2023
Rank: M21a
Publisher: Springer
Journal: Journal of Applied Mathematics and Computing
Abstract: 
We show that the eigenvalue-free interval for the eccentricity matrix of every threshold graph can be extended from (- 2 , - 1) , as shown in [Z. Qiu, Z. Tang, On the eccentricity spectra of threshold graphs. Discrete Appl. Math. 310, 75–85 (2022)], to (-1-2,-2)∪(-2,-1), and to a larger interval if we exclude certain pathological cases. Our results are based on the fact that the characteristic matrix of the quotient matrix of the eccentricity matrix of a threshold graph is row equivalent to a particular tridiagonal matrix.
Description: 
This is a version submitted to the journal
Journal of Applied Mathematics and Computing, but it is not a Version of Record. The Version of Record is available at https://doi.org/10.1007/s12190-022-01758-3
URI: https://research.matf.bg.ac.rs/handle/123456789/692
ISSN: 15985865
DOI: 10.1007/s12190-022-01758-3
Appears in Collections:Research outputs

Files in This Item:
File SizeFormat Existing users please
EccentricityThresholdREV.pdf97.03 kBAdobe PDF
    Request a copy
Show full item record

SCOPUSTM   
Citations

8
checked on Nov 8, 2024

Page view(s)

20
checked on Nov 14, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.