Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/654
Title: Searching for a counterexample to Kurepa's conjecture
Authors: Andrejić, Vladica 
Tatarevic, Milos
Affiliations: Geometry 
Keywords: Divisibility;Left factorial;Prime numbers
Issue Date: 1-Jan-2016
Journal: Mathematics of Computation
Abstract: 
Kurepa's conjecture states that there is no odd prime p that divides !p=0!+1!+..+(p-1)!. We search for a counterexample to this conjecture for all p < 234. We introduce new optimization techniques and perform the computation using graphics processing units. Additionally, we consider the generalized Kurepa's left factorial given by !kn=(0!)k+(1!)k+..+((n-1)!)k, and show that for all integers 1 k < 100 there exists an odd prime p such that p | !kp.
URI: https://research.matf.bg.ac.rs/handle/123456789/654
ISSN: 00255718
DOI: 10.1090/mcom/3098
Appears in Collections:Research outputs

Show full item record

SCOPUSTM   
Citations

7
checked on Nov 10, 2024

Page view(s)

7
checked on Nov 15, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.