Please use this identifier to cite or link to this item:
https://research.matf.bg.ac.rs/handle/123456789/654
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Andrejić, Vladica | en_US |
dc.contributor.author | Tatarevic, Milos | en_US |
dc.date.accessioned | 2022-08-13T16:55:06Z | - |
dc.date.available | 2022-08-13T16:55:06Z | - |
dc.date.issued | 2016-01-01 | - |
dc.identifier.issn | 00255718 | en |
dc.identifier.uri | https://research.matf.bg.ac.rs/handle/123456789/654 | - |
dc.description.abstract | Kurepa's conjecture states that there is no odd prime p that divides !p=0!+1!+..+(p-1)!. We search for a counterexample to this conjecture for all p < 234. We introduce new optimization techniques and perform the computation using graphics processing units. Additionally, we consider the generalized Kurepa's left factorial given by !kn=(0!)k+(1!)k+..+((n-1)!)k, and show that for all integers 1 k < 100 there exists an odd prime p such that p | !kp. | en |
dc.relation.ispartof | Mathematics of Computation | en |
dc.subject | Divisibility | en |
dc.subject | Left factorial | en |
dc.subject | Prime numbers | en |
dc.title | Searching for a counterexample to Kurepa's conjecture | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1090/mcom/3098 | - |
dc.identifier.scopus | 2-s2.0-85002647650 | - |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/85002647650 | - |
dc.contributor.affiliation | Geometry | en_US |
dc.relation.firstpage | 3061 | en |
dc.relation.lastpage | 3068 | en |
dc.relation.volume | 85 | en |
dc.relation.issue | 302 | en |
item.fulltext | No Fulltext | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | Geometry | - |
crisitem.author.orcid | 0000-0003-3288-1845 | - |
Appears in Collections: | Research outputs |
SCOPUSTM
Citations
7
checked on Nov 10, 2024
Page view(s)
7
checked on Nov 15, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.