Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/654
DC FieldValueLanguage
dc.contributor.authorAndrejić, Vladicaen_US
dc.contributor.authorTatarevic, Milosen_US
dc.date.accessioned2022-08-13T16:55:06Z-
dc.date.available2022-08-13T16:55:06Z-
dc.date.issued2016-01-01-
dc.identifier.issn00255718en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/654-
dc.description.abstractKurepa's conjecture states that there is no odd prime p that divides !p=0!+1!+..+(p-1)!. We search for a counterexample to this conjecture for all p < 234. We introduce new optimization techniques and perform the computation using graphics processing units. Additionally, we consider the generalized Kurepa's left factorial given by !kn=(0!)k+(1!)k+..+((n-1)!)k, and show that for all integers 1 k < 100 there exists an odd prime p such that p | !kp.en
dc.relation.ispartofMathematics of Computationen
dc.subjectDivisibilityen
dc.subjectLeft factorialen
dc.subjectPrime numbersen
dc.titleSearching for a counterexample to Kurepa's conjectureen_US
dc.typeArticleen_US
dc.identifier.doi10.1090/mcom/3098-
dc.identifier.scopus2-s2.0-85002647650-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85002647650-
dc.contributor.affiliationGeometryen_US
dc.relation.firstpage3061en
dc.relation.lastpage3068en
dc.relation.volume85en
dc.relation.issue302en
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptGeometry-
crisitem.author.orcid0000-0003-3288-1845-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

7
checked on Nov 10, 2024

Page view(s)

7
checked on Nov 15, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.