Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/637
Title: Weighted p− partitions enumerator
Authors: Pěsović, Marko
Stojadinović, Tanja 
Affiliations: Algebra and Mathematical Logic 
Keywords: Combinatorial Hopf algebra;Generalized permutohedron;Poset;Quasisymmetric function
Issue Date: 1-Jan-2021
Rank: M21
Journal: Applicable Analysis and Discrete Mathematics
Abstract: 
To an extended generalized permutohedron we associate the weighted integer points enumerator, whose principal specialization is the f-polynomial. In the case of poset cones it refines Gessel’s P-partitions enumerator. We show that this enumerator is a quasisymmetric function obtained by universal morphism from the Hopf algebra of posets.
URI: https://research.matf.bg.ac.rs/handle/123456789/637
ISSN: 14528630
DOI: 10.2298/AADM200525013P
Appears in Collections:Research outputs

Show full item record

Page view(s)

17
checked on Dec 24, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.