Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/530
Title: Clarkson–McCarthy Inequalities for Several Operators and Related Norm Inequalities for p-Modified Unitarily Invariant Norms
Authors: Jocić, Danko 
Affiliations: Real and Functional Analysis 
Keywords: Circulant block operator matrix;Concave function;Convex function;Finite Fourier transform;Non-commutative Clarkson inequalities;Unitarily invariant norm
Issue Date: 1-Apr-2019
Journal: Complex Analysis and Operator Theory
Abstract: 
Let | | · | | Φ be a unitarily invariant norm related to a symmetrically norming (s.n.) function Φ , defined on the associated ideal C Φ (H) of compact Hilbert space operators, let ||·||Φ(q) be its degree q-modification, let ||·||Φ(q)∗ be a dual norm to ||·||Φ(q) and let [Am,n]m,n∈Z be a block operator matrix. We show that, if 0 < p≤ 2 and q≥ p, then ∥[Am,n]m,n∈Z∥Φ(q)p≤∑m∈Z∥[Am,n]n∈Z∥Φ(q)p≤∑m,n∈Z∥Am,n∥Φ(q)p.If 2 ≤ p< + ∞ and q≥ p/ (p- 1) , then ∥[Am,n]m,n∈Z∥Φ(q)∗p≥∑m∈Z∥[Am,n]n∈Z∥Φ(q)∗p≥∑m,n∈Z∥Am,n∥Φ(q)∗p.If 2 ≤ p< + ∞, q≥ p/ (p- 1) and Φ(q)∗=Ψ(r), for some 1 ≤ r≤ p and for some s.n. function Ψ , we extend Clarkson–McCarthy inequalities to an n-tuple of operators (A1,A2,⋯,AN) as N∑n=1N∥An∥Φ(q)∗p≤(∑n=1N∥∑k=1NωNnkAk∥Φ(q)∗r)pr≤Npr-1∑n=1N∥∑k=1NωNnkAk∥Φ(q)∗p≤Npr+p-2(∑n=1N∥An∥Φ(q)∗r)pr≤N2pr+p-3∑n=1N∥An∥Φ(q)∗p.In addition, we provide some refinements of the above inequalities, as well as some new norm inequalities.
URI: https://research.matf.bg.ac.rs/handle/123456789/530
ISSN: 16618254
DOI: 10.1007/s11785-017-0724-y
Appears in Collections:Research outputs

Show full item record

SCOPUSTM   
Citations

2
checked on Nov 7, 2024

Page view(s)

7
checked on Nov 14, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.