Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/530
DC FieldValueLanguage
dc.contributor.authorJocić, Dankoen_US
dc.date.accessioned2022-08-13T10:31:36Z-
dc.date.available2022-08-13T10:31:36Z-
dc.date.issued2019-04-01-
dc.identifier.issn16618254en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/530-
dc.description.abstractLet | | · | | Φ be a unitarily invariant norm related to a symmetrically norming (s.n.) function Φ , defined on the associated ideal C Φ (H) of compact Hilbert space operators, let ||·||Φ(q) be its degree q-modification, let ||·||Φ(q)∗ be a dual norm to ||·||Φ(q) and let [Am,n]m,n∈Z be a block operator matrix. We show that, if 0 < p≤ 2 and q≥ p, then ∥[Am,n]m,n∈Z∥Φ(q)p≤∑m∈Z∥[Am,n]n∈Z∥Φ(q)p≤∑m,n∈Z∥Am,n∥Φ(q)p.If 2 ≤ p< + ∞ and q≥ p/ (p- 1) , then ∥[Am,n]m,n∈Z∥Φ(q)∗p≥∑m∈Z∥[Am,n]n∈Z∥Φ(q)∗p≥∑m,n∈Z∥Am,n∥Φ(q)∗p.If 2 ≤ p< + ∞, q≥ p/ (p- 1) and Φ(q)∗=Ψ(r), for some 1 ≤ r≤ p and for some s.n. function Ψ , we extend Clarkson–McCarthy inequalities to an n-tuple of operators (A1,A2,⋯,AN) as N∑n=1N∥An∥Φ(q)∗p≤(∑n=1N∥∑k=1NωNnkAk∥Φ(q)∗r)pr≤Npr-1∑n=1N∥∑k=1NωNnkAk∥Φ(q)∗p≤Npr+p-2(∑n=1N∥An∥Φ(q)∗r)pr≤N2pr+p-3∑n=1N∥An∥Φ(q)∗p.In addition, we provide some refinements of the above inequalities, as well as some new norm inequalities.en
dc.relation.ispartofComplex Analysis and Operator Theoryen
dc.subjectCirculant block operator matrixen
dc.subjectConcave functionen
dc.subjectConvex functionen
dc.subjectFinite Fourier transformen
dc.subjectNon-commutative Clarkson inequalitiesen
dc.subjectUnitarily invariant normen
dc.titleClarkson–McCarthy Inequalities for Several Operators and Related Norm Inequalities for p-Modified Unitarily Invariant Normsen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s11785-017-0724-y-
dc.identifier.scopus2-s2.0-85029766250-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85029766250-
dc.contributor.affiliationReal and Functional Analysisen_US
dc.relation.firstpage583en
dc.relation.lastpage613en
dc.relation.volume13en
dc.relation.issue3en
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptReal and Functional Analysis-
crisitem.author.orcid0000-0003-2084-7180-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

2
checked on Nov 7, 2024

Page view(s)

7
checked on Nov 14, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.