Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/2459
DC FieldValueLanguage
dc.contributor.authorŠukilović, Tijanaen_US
dc.date.accessioned2025-09-06T09:04:31Z-
dc.date.available2025-09-06T09:04:31Z-
dc.date.issued2015-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/2459-
dc.description.abstractU ovom radu izlažemo klasifikaciju levo-invarijantnih metrika proizvoljne signature na četvorodimenzionim nilpotentnim Lijevim grupama. Detaljno ispitujemo njihovu geometriju, sa posebnim naglaskom na grupe holonomija i dekompozabilnost metrika. Takođe, potpuno opisujemo grupe izometrija i nalazimo primere metrika za koje su zadovoljene stroge nejednakosti Isplit < Iaut < I. U slučaju metrika neutralne signature na nilpotentnim Lijevim grupama sa degenerisanim centrom dobijamo Vokerove metrike. Formulišemo i dokazujemo potreban i dovoljan uslov da one dopuštaju nilpotentnu grupu izometrija. Na kraju, dajemo odgovor na pitanje egzistencije projektivno ekvivalentnih metrika. Pokazujemo da su na četvorodimenzionim nilpotentnim Lijevim grupama sve levo-invarijantne metrike ili geometrijski rigidne ili postoje njima projektivno ekvivalentne metrike koje su istovremeno i afino ekvivalentne. Iako su sve afino ekvivalentne metrike levo-invarijantne, njihova signatura može biti različita.en_US
dc.description.abstractIn the present work we classify left invariant metrics of arbitrary signature on four-dimensional nilpotent Lie groups. Their geometry is extensively studied with special emphasis on holonomy groups and decomposability of metrics. Also, isometry groups are completely described and we give examples of metrics where strict inequalities Isplit < Iaut < I hold. It is interesting that Walker metrics appear as the underlying structure of neutral signature metrics on the nilpotent Lie groups with degenerate center. We find necessary and sufficient condition for them to locally admit nilpotent group of isometries. Finally, we solve the problem of projectively equivalent metric on four-dimensional nilpotent Lie groups by showing that left invariant metric is either geometrically rigid or have projectively equivalent metrics that are also affinely equivalent. All affinely equivalent metrics are left invariant, while their signature may change.en_US
dc.language.isootheren_US
dc.publisherBeograd : Matematički fakulteten_US
dc.subjectNilpotent Lie groupen_US
dc.subjectHolonomy groupen_US
dc.subjectIsometry groupsen_US
dc.subjectgeodesically equivalent metricen_US
dc.titleГеометрија четвородимензионих нилпотентних Лијевих групаen_US
dc.title.alternativeGeometry of four-dimensional nilpotent Lie groupsen_US
dc.typeDoctoral Thesisen_US
dc.identifier.urlhttp://elibrary.matf.bg.ac.rs/bitstream/handle/123456789/4453/Doktorska_disertacija_-_Tijana_Sukilovic.pdf?sequence=1-
dc.contributor.affiliationGeometryen_US
dc.description.rankM70en_US
dc.relation.firstpage86 str. : graf. prikazi ; 30 cmen_US
item.languageiso639-1other-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.openairetypeDoctoral Thesis-
crisitem.author.deptGeometry-
Appears in Collections:Research outputs
Show simple item record

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.