Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/190
Title: Gröbner bases for (partial) flag manifolds
Authors: Petrović, Zoran 
Prvulović, Branislav 
Radovanović, Marko 
Affiliations: Algebra and Mathematical Logic 
Topology 
Algebra and Mathematical Logic 
Keywords: Borel description;Chern classes;Flag manifolds;Gröbner bases
Issue Date: 1-Nov-2020
Journal: Journal of Symbolic Computation
Abstract: 
For an arbitrary complex (partial) flag manifold F, a Gröbner basis for the ideal which (in the Borel picture) determines the cohomology algebra H⁎(F;Z) is obtained. This Gröbner basis is used to derive multiplication rules for a convenient additive basis of H⁎(F;Z) given in terms of Chern classes of the canonical bundles over F. The analogous Gröbner bases related to the mod 2 cohomology of real flag manifolds are also presented.
URI: https://research.matf.bg.ac.rs/handle/123456789/190
ISSN: 07477171
DOI: 10.1016/j.jsc.2019.06.008
Appears in Collections:Research outputs

Show full item record

SCOPUSTM   
Citations

1
checked on Dec 22, 2024

Page view(s)

17
checked on Dec 24, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.