Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/1395
Title: On the Hilbert matrix norm on positively indexed weighted Bergman spaces
Authors: Dmitrović, Dušica 
Karapetrović, Boban 
Affiliations: Real and Complex Analysis 
Real and Complex Analysis 
Keywords: Hilbert matrix;Operator norm;Weighted Bergman spaces
Issue Date: 1-Oct-2023
Rank: M21a
Publisher: Springer
Journal: Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales - Serie A: Matematicas
Abstract: 
The Hilbert matrix is bounded on weighted Bergman spaces Aαp if and only if 1 < α+ 2 < p with the conjectured norm π/sin(α+2)πp . In the case of positively indexed weighted Bergman spaces, that is, in the case when α> 0 , the conjecture was confirmed for α≤ p , where α is a unique zero of the function Φα(x)=2x2-(4(α+2)+1)x+2α+2x+α+2 on the interval (α+ 2 , 2 (α+ 2)) . In this note we prove, that if α> 0 , then the conjecture is valid for all 3α4+2+(3α4+2)2-α+22≤p. This improves the best previously known result for all α>12 .
Description: 
This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1007/s13398-023-01469-9
URI: https://research.matf.bg.ac.rs/handle/123456789/1395
ISSN: 15787303
DOI: 10.1007/s13398-023-01469-9
Appears in Collections:Research outputs

Files in This Item:
File Description SizeFormat Existing users please
HilbertMatrixNormPIWB.pdf337.85 kBAdobe PDF
    Request a copy
Show full item record

Page view(s)

23
checked on Dec 24, 2024

Download(s)

2
checked on Dec 24, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.