Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/1395
DC FieldValueLanguage
dc.contributor.authorDmitrović, Dušicaen_US
dc.contributor.authorKarapetrović, Bobanen_US
dc.date.accessioned2024-11-28T14:04:34Z-
dc.date.available2024-11-28T14:04:34Z-
dc.date.issued2023-10-01-
dc.identifier.issn15787303-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/1395-
dc.descriptionThis version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: <a href="http://dx.doi.org/10.1007/s13398-023-01469-9">http://dx.doi.org/10.1007/s13398-023-01469-9</a>en_US
dc.description.abstractThe Hilbert matrix is bounded on weighted Bergman spaces Aαp if and only if 1 < α+ 2 < p with the conjectured norm π/sin(α+2)πp . In the case of positively indexed weighted Bergman spaces, that is, in the case when α> 0 , the conjecture was confirmed for α≤ p , where α is a unique zero of the function Φα(x)=2x2-(4(α+2)+1)x+2α+2x+α+2 on the interval (α+ 2 , 2 (α+ 2)) . In this note we prove, that if α> 0 , then the conjecture is valid for all 3α4+2+(3α4+2)2-α+22≤p. This improves the best previously known result for all α>12 .en_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.ispartofRevista de la Real Academia de Ciencias Exactas, Fisicas y Naturales - Serie A: Matematicasen_US
dc.subjectHilbert matrixen_US
dc.subjectOperator normen_US
dc.subjectWeighted Bergman spacesen_US
dc.titleOn the Hilbert matrix norm on positively indexed weighted Bergman spacesen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s13398-023-01469-9-
dc.identifier.scopus2-s2.0-85162976530-
dc.identifier.isi001018922700001-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85162976530-
dc.contributor.affiliationReal and Complex Analysisen_US
dc.contributor.affiliationReal and Complex Analysisen_US
dc.relation.issn1578-7303en_US
dc.description.rankM21aen_US
dc.relation.firstpageArticle no. 138en_US
dc.relation.volume117en_US
dc.relation.issue4en_US
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.grantfulltextrestricted-
item.openairetypeArticle-
crisitem.author.deptReal and Complex Analysis-
crisitem.author.deptReal and Complex Analysis-
crisitem.author.orcid0000-0001-6758-9639-
crisitem.author.orcid0000-0001-5296-8070-
Appears in Collections:Research outputs
Files in This Item:
File Description SizeFormat Existing users please
HilbertMatrixNormPIWB.pdf337.85 kBAdobe PDF
    Request a copy
Show simple item record

Page view(s)

23
checked on Dec 24, 2024

Download(s)

2
checked on Dec 24, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.